Communications of the
Korean Mathematical Society
CKMS

ISSN(Print) 1225-1763 ISSN(Online) 2234-3024

Most Read

HOME VIEW ARTICLES Most Read
  • 2023-10-31

    Complete lifts of a semi-symmetric non-metric connection from a Riemannian manifold to its tangent bundles

    Uday Chand De, Mohammad Nazrul Islam Khan

    Abstract : The aim of the present paper is to study complete lifts of a semi-symmetric non-metric connection from a Riemannian manifold to its tangent bundles. Some curvature properties of a Riemannian manifold to its tangent bundles with respect to such a connection have been investigated.

  • 2023-07-31

    Certain study of generalized $B$ curvature tensor within the framework of Kenmotsu manifold

    Rahuthanahalli Thimmegowda Naveen Kumar, Basavaraju Phalaksha Murthy, Puttasiddappa Somashekhara, Venkatesha Venkatesha

    Abstract : In the present study, we consider some curvature properties of generalized $B$-curvature tensor on Kenmotsu manifold. Here first we describe certain vanishing properties of generalized $B$ curvature tensor on Kenmostu manifold. Later we formulate generalized $B$ pseudo-symmetric condition on Kenmotsu manifold. Moreover, we also characterize generalized $B$ $\phi$-recurrent Kenmotsu manifold.

  • 2024-01-31

    Spacetimes admitting divergence free $m$-projective curvature tensor

    Uday Chand De, Dipankar Hazra

    Abstract : This paper is concerned with the study of spacetimes satisfying $\mathrm{div}\mathcal{M}=0$, where ``div" denotes the divergence and $\mathcal{M}$ is the $m$-projective curvature tensor. We establish that a perfect fluid spacetime with $\mathrm{div}\mathcal{M}=0$ is a generalized Robertson-Walker spacetime and vorticity free; whereas a four-dimensional perfect fluid spacetime becomes a Robertson-Walker spacetime. Moreover, we establish that a Ricci recurrent spacetime with $\mathrm{div}\mathcal{M}=0$ represents a generalized Robertson-Walker spacetime.

  • 2024-01-31

    Generalized derivations in ring with involution involving symmetric and skew symmetric elements

    Souad DAKIR, Hajar EL MIR, Abdellah MAMOUNI

    Abstract : In this paper we will demonstrate some results on a prime ring with involution by introducing two generalized derivations acting on symmetric and skew symmetric elements. This approach allows us to generalize some well known results. Furthermore, we provide examples to show that various restrictions imposed in the hypotheses of our theorems are not superfluous.

  • 2024-01-31

    On strongly quasi $J$-ideals of commutative rings

    El Mehdi Bouba , Yassine EL-khabchi, Mohammed Tamekkante

    Abstract : Let $R$ be a commutative ring with identity. In this paper, we introduce a new class of ideals called the class of strongly quasi $J$-ideals lying properly between the class of $J$-ideals and the class of quasi $J$-ideals. A proper ideal $I$ of $R$ is called a strongly quasi $J$-ideal if, whenever $a$, $b\in R$ and $ab\in I$, then $a^{2}\in I$ or $b\in {\rm Jac}(R)$. Firstly, we investigate some basic properties of strongly quasi $J$-ideals. Hence, we give the necessary and sufficient conditions for a ring $R$ to contain a strongly quasi $J$-ideals. Many other results are given to disclose the relations between this new concept and others that already exist. Namely, the primary ideals, the prime ideals and the maximal ideals. Finally, we give an idea about some strongly quasi $J$-ideals of the quotient rings, the localization of rings, the polynomial rings and the trivial rings extensions.

    Show More  
  • 2023-04-30

    Results associated with the Schwarz lemma on the boundary

    B\"{u}lent Nafi \"{O}rnek

    Abstract : In this paper, some estimations will be given for the analytic functions belonging to the class $\mathcal{R}\left( \alpha \right) $. In these estimations, an upper bound and a lower bound will be determined for the first coefficient of the expansion of the analytic function $h(z)$ and the modulus of the angular derivative of the function $\frac{zh^{\prime }(z)}{ h(z)}$, respectively. Also, the relationship between the coefficients of the analytical function $h(z)$ and the derivative mentioned above will be shown.

  • 2023-01-31

    An exponentially fitted method for two parameter singularly perturbed parabolic boundary value problems

    Gemechis File Duressa, Tariku Birabasa Mekonnen

    Abstract : This article devises an exponentially fitted method for the numerical solution of two parameter singularly perturbed parabolic boundary value problems. The proposed scheme is able to resolve the two lateral boundary layers of the solution. Error estimates show that the constructed scheme is parameter-uniformly convergent with a quadratic numerical rate of convergence. Some numerical test examples are taken from recently published articles to confirm the theoretical results and demonstrate a good performance of the current scheme.

  • 2023-10-31

    The dimension of the maximal spectrum of some ring extensions

    Rachida EL KHALFAOUI, Najib Mahdou

    Abstract : Let $A$ be a ring and $\mathcal{J} = \{\text{ideals $I$ of $A$} \,|\, J(I) = I\}$. The Krull dimension of $A$, written $\dim A$, is the sup of the lengths of chains of prime ideals of $A$; whereas the dimension of the maximal spectrum, denoted by $\dim_\mathcal{J} A$, is the sup of the lengths of chains of prime ideals from $\mathcal{J}$. Then $\dim_{\mathcal{J}} A\leq \dim A$. In this paper, we will study the dimension of the maximal spectrum of some constructions of rings and we will be interested in the transfer of the property $J$-Noetherian to ring extensions.

  • 2023-07-31

    On nonnil-SFT rings

    Ali Benhissi, Abdelamir Dabbabi

    Abstract : The purpose of this paper is to introduce a new class of rings containing the class of SFT-rings and contained in the class of rings with Noetherian prime spectrum. Let $A$ be a commutative ring with unit and $I$ be an ideal of $A$. We say that $I$ is SFT if there exist an integer $k\geq 1$ and a finitely generated ideal $F\subseteq I$ of $A$ such that $x^k\in F$ for every $x\in I$. The ring $A$ is said to be nonnil-SFT, if each nonnil-ideal (i.e., not contained in the nilradical of $A$) is SFT. We investigate the nonnil-SFT variant of some well known theorems on SFT-rings. Also we study the transfer of this property to Nagata's idealization and the amalgamation algebra along an ideal. Many examples are given. In fact, using the amalgamation construction, we give an infinite family of nonnil-SFT rings which are not SFT.

    Show More  
  • 2024-04-30

    On a special class of matrix rings

    Arnab Bhattacharjee

    Abstract : In this paper, we continue to explore an idea presented in \cite{bhatt2020} and introduce a new class of matrix rings called \emph{staircase} matrix rings which has applications in noncommutative ring theory. We show that these rings preserve the notions of reduced, symmetric, reversible, IFP, reflexive, abelian rings, etc.

Current Issue

October, 2024
Vol.39 No.4

Current Issue
Archives

Most Read

Most Downloaded

CKMS