Abstract : Let $R_e=\frac{\mathbb{F}_{p^m}[u]}{\langle u^e \rangle}$, where $p$ is a prime, $ e $ is a positive integer and $u^e=0$. In this paper, we first characterize the structure of cyclic codes of length $p^s$ over $R_e$. These codes will be classified into $2^e $ distinct types. Among other results, in the case that $e=4$, the torsion codes of cyclic codes of length $ p^s $ over $ R_4$ are obtained. Also, we present some examples of cyclic codes of length $p^s $ over $R_e$.
Ismael Akray, Amin Mahamad Zebari
Commun. Korean Math. Soc. 2023; 38(1): 21-38
https://doi.org/10.4134/CKMS.c210349
Vinay Kumar, Rajendra Prasad, Sandeep Kumar Verma
Commun. Korean Math. Soc. 2023; 38(1): 205-221
https://doi.org/10.4134/CKMS.c210433
Ioannis Diamantis
Commun. Korean Math. Soc. 2022; 37(4): 1221-1248
https://doi.org/10.4134/CKMS.c210169
Harish Chandra, Anurag Kumar Patel
Commun. Korean Math. Soc. 2023; 38(2): 451-459
https://doi.org/10.4134/CKMS.c220108
Vinay Kumar, Rajendra Prasad, Sandeep Kumar Verma
Commun. Korean Math. Soc. 2023; 38(1): 205-221
https://doi.org/10.4134/CKMS.c210433
Ismael Akray, Amin Mahamad Zebari
Commun. Korean Math. Soc. 2023; 38(1): 21-38
https://doi.org/10.4134/CKMS.c210349
Anjan Kumar Bhuniya, Manas Kumbhakar
Commun. Korean Math. Soc. 2023; 38(1): 1-9
https://doi.org/10.4134/CKMS.c210057
Atul Gaur, Rahul Kumar
Commun. Korean Math. Soc. 2023; 38(1): 11-19
https://doi.org/10.4134/CKMS.c210272
© 2022. The Korean Mathematical Society. Powered by INFOrang Co., Ltd