Abstract : Let $A$ be a ring and $\mathcal{J} = \{\text{ideals $I$ of $A$} \,|\, J(I) = I\}$. The Krull dimension of $A$, written $\dim A$, is the sup of the lengths of chains of prime ideals of $A$; whereas the dimension of the maximal spectrum, denoted by $\dim_\mathcal{J} A$, is the sup of the lengths of chains of prime ideals from $\mathcal{J}$. Then $\dim_{\mathcal{J}} A\leq \dim A$. In this paper, we will study the dimension of the maximal spectrum of some constructions of rings and we will be interested in the transfer of the property $J$-Noetherian to ring extensions.
Abstract : This article devises an exponentially fitted method for the numerical solution of two parameter singularly perturbed parabolic boundary value problems. The proposed scheme is able to resolve the two lateral boundary layers of the solution. Error estimates show that the constructed scheme is parameter-uniformly convergent with a quadratic numerical rate of convergence. Some numerical test examples are taken from recently published articles to confirm the theoretical results and demonstrate a good performance of the current scheme.
Abstract : In this paper, some estimations will be given for the analytic functions belonging to the class $\mathcal{R}\left( \alpha \right) $. In these estimations, an upper bound and a lower bound will be determined for the first coefficient of the expansion of the analytic function $h(z)$ and the modulus of the angular derivative of the function $\frac{zh^{\prime }(z)}{ h(z)}$, respectively. Also, the relationship between the coefficients of the analytical function $h(z)$ and the derivative mentioned above will be shown.
Abstract : The aim of this paper is to study the descriptive set-theoretic complexity of the Hewitt-Stromberg measure and dimension maps.
Abstract : In this study, we show that the strong exponential limit shadowing property (SELmSP, for short), which has been recently introduced, exists on a neighborhood of a hyperbolic set of a diffeomorphism. We also prove that $\Omega$-stable diffeomorphisms and $\mathcal{\mathcal{L}}$-hyperbolic homeomorphisms have this type of shadowing property. By giving examples, it is shown that this type of shadowing is different from the other shadowings, and the chain transitivity and chain mixing are not necessary for it. Furthermore, we extend this type of shadowing property to positively expansive maps with the shadowing property.
Abstract : A class of systems of Caputo fractional differential equations with integral boundary conditions is considered. A numerical method based on a finite difference scheme on a uniform mesh is proposed. Supremum norm is used to derive an error estimate which is of order $\kappa-1$, $1
Abstract : In this paper we present a full circle approximation method using parametric polynomial curves with algebraic coefficients which are curvature continuous at both endpoints. Our method yields the $n$-th degree parametric polynomial curves which have a total number of $2n$ contacts with the full circle at both endpoints and the midpoint. The parametric polynomial approximants have algebraic coefficients involving rational numbers and radicals for degree higher than four. We obtain the exact Hausdorff distances between the circle and the approximation curves.
Abstract : The purpose of this paper is to introduce a new class of rings containing the class of SFT-rings and contained in the class of rings with Noetherian prime spectrum. Let $A$ be a commutative ring with unit and $I$ be an ideal of $A$. We say that $I$ is SFT if there exist an integer $k\geq 1$ and a finitely generated ideal $F\subseteq I$ of $A$ such that $x^k\in F$ for every $x\in I$. The ring $A$ is said to be nonnil-SFT, if each nonnil-ideal (i.e., not contained in the nilradical of $A$) is SFT. We investigate the nonnil-SFT variant of some well known theorems on SFT-rings. Also we study the transfer of this property to Nagata's idealization and the amalgamation algebra along an ideal. Many examples are given. In fact, using the amalgamation construction, we give an infinite family of nonnil-SFT rings which are not SFT.
Abstract : Our aim is to establish certain image formulas of the $ (p,\nu)$--extended Gauss' hypergeometric function $F_{\,p,\nu}(a,b;c;z)$ by using Saigo's hypergeometric fractional calculus (integral and differential) operators. Corresponding assertions for the classical Riemann-Liouville(R-L) and Erd\'elyi-Kober(E-K) fractional integral and differential operators are deduced. All the results are represented in terms of the Hadamard product of the $ (p,\nu)$--extended Gauss's hypergeometric function $F_{\,p,\nu}(a,b;c;z)$ and Fox-Wright function $_{r}\Psi_{s}(z)$. We also established Jacobi and its particular assertions for the Gegenbauer and Legendre transforms of the $ (p,\nu)$--extended Gauss' hypergeometric function $F_{\,p,\nu}(a,b;c;z)$.
Abstract : In the present study, we consider some curvature properties of generalized $B$-curvature tensor on Kenmotsu manifold. Here first we describe certain vanishing properties of generalized $B$ curvature tensor on Kenmostu manifold. Later we formulate generalized $B$ pseudo-symmetric condition on Kenmotsu manifold. Moreover, we also characterize generalized $B$ $\phi$-recurrent Kenmotsu manifold.
Kanwal Jabeen, Afis Saliu
Commun. Korean Math. Soc. 2022; 37(4): 995-1007
https://doi.org/10.4134/CKMS.c210273
Abhijit Banerjee, Arpita Kundu
Commun. Korean Math. Soc. 2023; 38(2): 525-545
https://doi.org/10.4134/CKMS.c220168
Dumitru Baleanu, Banupriya Kandasamy, Ramkumar Kasinathan, Ravikumar Kasinathan, Varshini Sandrasekaran
Commun. Korean Math. Soc. 2023; 38(3): 967-982
https://doi.org/10.4134/CKMS.c220231
Tamem Al-Shorman, Malik Bataineh, Ece Yetkin Celikel
Commun. Korean Math. Soc. 2023; 38(2): 365-376
https://doi.org/10.4134/CKMS.c220169
Shiv Sharma Shukla, Vipul Singh
Commun. Korean Math. Soc. 2023; 38(4): 1191-1213
https://doi.org/10.4134/CKMS.c220309
Ali Benhissi, Abdelamir Dabbabi
Commun. Korean Math. Soc. 2023; 38(3): 663-677
https://doi.org/10.4134/CKMS.c220230
OM P. AHUJA, Asena \c{C}etinkaya, NAVEEN KUMAR JAIN
Commun. Korean Math. Soc. 2023; 38(4): 1111-1126
https://doi.org/10.4134/CKMS.c230002
Tarak Mandal, Avijit Sarkar
Commun. Korean Math. Soc. 2023; 38(3): 865-880
https://doi.org/10.4134/CKMS.c220145
© 2022. The Korean Mathematical Society. Powered by INFOrang Co., Ltd