Commun. Korean Math. Soc. 2018; 33(3): 695-704
Online first article June 12, 2018 Printed July 31, 2018
https://doi.org/10.4134/CKMS.c170244
Copyright © The Korean Mathematical Society.
Mustafa Bah\c{s}i, S\"{u}leyman Solak
Education Faculty, A. K. Education Faculty
In this paper, firstly we compute the spectral norm of $g$-circulant matrices $C_{n,g}=g\text{-Circ}(c_0,c_1,\ldots ,c_{n-1})$, where $c_i \geq 0$ or $c_i \leq 0$ (equivalently $c_i\cdot c_j\geq 0)$. After, we compute the spectral norms, determinants and inverses of the $g$-circulant matrices with the Fibonacci and Lucas numbers.
Keywords: circulant matrix, $g$-circulant matrix, Fibonacci number, Lucas number, spectral norm, determinant, inverse
MSC numbers: 15B05, 15A60, 11B37, 11B39
2023; 38(2): 341-354
2017; 32(3): 511-522
2016; 31(3): 447-450
2022; 37(4): 977-988
© 2022. The Korean Mathematical Society. Powered by INFOrang Co., Ltd