Commun. Korean Math. Soc. 2017; 32(2): 361-373
Online first article January 18, 2017 Printed April 30, 2017
https://doi.org/10.4134/CKMS.c160123
Copyright © The Korean Mathematical Society.
Min Feng Chen and Zong Sheng Gao
Beihang University, Beihang University
In this paper, we utilize the Nevanlinna theory and uniqueness theory of meromorphic function to investigate the differential-diff\-erence analogue of Br\"{u}ck conjecture. In other words, we consider \linebreak $\Delta_{\eta}f(z)=f(z+\eta)-f(z)$ and $f'(z)$ share one value or one small function, and then obtain the precise expression of transcendental entire function $f(z)$ under certain conditions, where $\eta\in \mathbb{C}\setminus \{0\}$ is a constant such that $f(z+\eta)-f(z)\not\equiv 0$.
Keywords: Nevanlinna theory, uniqueness theory, Br\"{u}ck conjecture, differential-difference equation
MSC numbers: 39B32, 34M05, 30D35
2024; 39(1): 117-125
2024; 39(1): 105-116
2020; 35(4): 1133-1142
2016; 31(3): 467-481
© 2022. The Korean Mathematical Society. Powered by INFOrang Co., Ltd