Commun. Korean Math. Soc. 2016; 31(3): 495-505
Printed July 31, 2016
https://doi.org/10.4134/CKMS.c150171
Copyright © The Korean Mathematical Society.
Chang-Kwon Choi, Jongjin Kim, and Bogeun Lee
Chonbuk National University, Chonbuk National University, Chonbuk National University
Let $f: \mathbb R^3 \to \mathbb R $. In this paper we prove the stability of functional inequalities \begin{align} |f(ux+vy, uy-vx,zw)-f(x, y,z)f(u,v,w)|&\le\phi(u, v, w) \,\, {\rm or}\,\,\phi(x, y, z), \nonumber \\ |f(ux-vy, uy-vx,zw)-f(x, y,z)f(u,v,w)|&\le\phi(u, v, w) \,\,{\rm or}\,\,\phi(x, y, z) \nonumber \end{align} for all $x,y,z,u,v,w \in \mathbb R$. Furthermore, we give refined descriptions of bounded functions satisfying the inequalities as in Albert and Baker \cite{AB}.
Keywords: determinant, exponential functional equation, multiplicative function, stability
MSC numbers: 39B82
2016; 31(1): 131-138
2023; 38(4): 1063-1074
2023; 38(3): 967-982
2023; 38(2): 341-354
© 2022. The Korean Mathematical Society. Powered by INFOrang Co., Ltd