A Note on Convertible $(0,1)$ Matrices II
Commun. Korean Math. Soc. 1999 Vol. 14, No. 2, 311-318
Si-Ju Kim, Taeg-Young Choi
Andong University, Andong University
Abstract : Let $A$ be an $n\times n$ (0,1) matrix. Let $f(A)$ denote the smallest nonnegative integer $k$ such that $perA[\alpha|\beta]>0$ and $A(\alpha|\beta)$ is permutation equivalent to a lower triangular matrix for some $\alpha,~ \beta \in Q_{k,n}$. In this case $f(A)$ is called the feedback number of $A$. In this paper, feedback numbers of some maximal convertible (0,1) matrices are studied.
Keywords : convertibility, feedback numbers
MSC numbers : 15C25
Downloads: Full-text PDF  


Copyright © Korean Mathematical Society. All Rights Reserved.
The Korea Science Technology Center (Rm. 411), 22, Teheran-ro 7-gil, Gangnam-gu, Seoul 06130, Korea
Tel: 82-2-565-0361  | Fax: 82-2-565-0364  | E-mail: paper@kms.or.kr   | Powered by INFOrang Co., Ltd