Unitary interpolation for operators in tridiagonal algebras
Commun. Korean Math. Soc. 2002 Vol. 17, No. 3, 487-493
Printed September 1, 2002
Joo Ho Kang,Young Soo Jo
Taegu University, Keimyung University
Abstract : Given operators $X$ and $Y$ acting on a Hilbert space $\Cal H$, an interpolating operator is a bounded operator $A$ such that $AX=Y$. An interpolating operator for the $n$-operators satisfies the equation $AX_i=Y_i$, for $i=1,2,\cdots,n$. In this article, we obtained the following : Let $X = (x_{ij})$ and $Y =(y_{ij})$ be operators acting on $\Cal H$ such that $x_{i \sigma(i)} \neq 0$ for all $i$. Then the following statements are equivalent. $$ \aligned \text{\rm (1)} & \ \text{\rm There exists a unitary operator $A$ in Alg$\Cal L$ such that $AX =Y$} \\ & \ \text{\rm and every $E$ in $\Cal L$ reduces $A$.} \\ \text{\rm (2)} & \ \text{\rm $\displaystyle \sup \left\{ {{\| \sum_{i=1}^n E_i Y f_i\|} \over{\| \sum_{i=1}^n E_i X f_i\|}} : n \in N, E_i \in {\Cal L} \ \text{\rm and} \ f_i \in {\Cal H} \right\} < \infty$ and } \\ & \ \text{\rm ${|y_{i \sigma(i)}| \over |x_{i \sigma(i)}|} = 1$ for all $i=1,2,\cdots$.} \endaligned $$
Keywords : interpolation problem, subspace lattice, unitary interpolation problem, Alg$\Cal L$
MSC numbers : 47L35
Downloads: Full-text PDF  

Copyright © Korean Mathematical Society.
(Rm.1109) The first building, 22, Teheran-ro 7-gil, Gangnam-gu, Seoul 06130, Korea
Tel: 82-2-565-0361  | Fax: 82-2-565-0364  | E-mail: paper@kms.or.kr   | Powered by INFOrang Co., Ltd