Composite-exponential-fitting interpolation rules
Commun. Korean Math. Soc. 2008 Vol. 23, No. 2, 295-305
Printed June 1, 2008
Kyung Joong Kim
Korea Aerospace University
Abstract : This paper demonstrates how composite-exponential-fitting interpolation rules can be constructed to fit an oscillatory function using not only pointwise values of that function but also of that functions's derivative on a closed and bounded interval of interest. This is done in the framework of exponential-fitting techniques. These rules extend the classical composite cubic Hermite interpolating polynomials in the sense that they become the classical composite polynomials as a parameter tends to zero. Some examples are provided to compare the newly constructed rules with the classical composite cubic Hermite interpolating polynomials (or recently developed interpolation rules).
Keywords : interpolation rule
MSC numbers : 65D05
Downloads: Full-text PDF  

Copyright © Korean Mathematical Society.
The Korea Science Technology Center (Rm. 411), 22, Teheran-ro 7-gil, Gangnam-gu, Seoul 06130, Korea
Tel: 82-2-565-0361  | Fax: 82-2-565-0364  | E-mail:   | Powered by INFOrang Co., Ltd