Commun. Korean Math. Soc. 2024; 39(3): 775-784
Online first article July 11, 2024 Printed July 31, 2024
https://doi.org/10.4134/CKMS.c230199
Copyright © The Korean Mathematical Society.
Ahmad Al-Omari , Takashi Noiri
Al al-Bayt University; 2949-1 Shiokita-cho, Hinagu
Let $(X, m$, $\mathcal{H})$ be a hereditary $m$-space and $\gamma : m \rightarrow P(X)$ be an operation on $m$. A subset $A$ of $X$ is said to be $\gamma\mathcal{H}$-compact relative to $X$ \cite{Al-No} if for every cover $\{ U_\alpha : \alpha \in \Delta \}$ of $A$ by $m$-open sets of $X$, there exists a finite subset $\Delta_0$ of $\Delta$ such that $A \setminus \cup\{ \gamma(U_\alpha) : \alpha \in \Delta_0 \} \in \mathcal{H}$. In this paper, we define and investigate two kinds of strong forms of $\gamma\mathcal{H}$-compact relative to $X$.
Keywords: Hereditary $m$-space, $\gamma\h$-compactness, strong $\gamma\h$-compactness, super $\gamma\h$-compactness
MSC numbers: Primary 54D20, 54D30
© 2022. The Korean Mathematical Society. Powered by INFOrang Co., Ltd