Commun. Korean Math. Soc. 2023; 38(4): 1019-1028
Online first article October 19, 2023 Printed October 31, 2023
https://doi.org/10.4134/CKMS.c230018
Copyright © The Korean Mathematical Society.
Raof Ahmad Bhat, Abbas Hussain Shikeh, Mohammad Aslam Siddeeque
Aligarh Muslim University; Aligarh Muslim University; Aligarh Muslim University
Let $\mathfrak{A}$ and $\mathfrak{B}$ be unital prime $*$-algebras such that $\mathfrak{A}$ contains a nontrivial projection. In the present paper, we show that if a bijective map $\Theta:\mathfrak{A}\to\mathfrak{B}$ satisfies $\Theta(_*[X\diamond Y, Z])={}_*[\Theta(X)\diamond \Theta(Y), \Theta(Z)]$ for all $X, Y, Z\in\mathfrak{A}$, then $\Theta$ or $-\Theta$ is a $*$-ring isomorphism. As an application, we shall characterize such maps in factor von Neumann algebras.
Keywords: $*$-algebra, isomorphism, von Neumann algebra
MSC numbers: Primary 16W20, 47B48
2025; 40(1): 71-84
1997; 12(3): 631-643
1998; 13(1): 7-20
1998; 13(2): 273-280
© 2022. The Korean Mathematical Society. Powered by INFOrang Co., Ltd