Abstract : In the present study, we consider some curvature properties of generalized $B$-curvature tensor on Kenmotsu manifold. Here first we describe certain vanishing properties of generalized $B$ curvature tensor on Kenmostu manifold. Later we formulate generalized $B$ pseudo-symmetric condition on Kenmotsu manifold. Moreover, we also characterize generalized $B$ $\phi$-recurrent Kenmotsu manifold.
Abstract : Let $A$ be a ring and $\mathcal{J} = \{\text{ideals $I$ of $A$} \,|\, J(I) = I\}$. The Krull dimension of $A$, written $\dim A$, is the sup of the lengths of chains of prime ideals of $A$; whereas the dimension of the maximal spectrum, denoted by $\dim_\mathcal{J} A$, is the sup of the lengths of chains of prime ideals from $\mathcal{J}$. Then $\dim_{\mathcal{J}} A\leq \dim A$. In this paper, we will study the dimension of the maximal spectrum of some constructions of rings and we will be interested in the transfer of the property $J$-Noetherian to ring extensions.
Abstract : In this paper, some estimations will be given for the analytic functions belonging to the class $\mathcal{R}\left( \alpha \right) $. In these estimations, an upper bound and a lower bound will be determined for the first coefficient of the expansion of the analytic function $h(z)$ and the modulus of the angular derivative of the function $\frac{zh^{\prime }(z)}{ h(z)}$, respectively. Also, the relationship between the coefficients of the analytical function $h(z)$ and the derivative mentioned above will be shown.
Abstract : This article devises an exponentially fitted method for the numerical solution of two parameter singularly perturbed parabolic boundary value problems. The proposed scheme is able to resolve the two lateral boundary layers of the solution. Error estimates show that the constructed scheme is parameter-uniformly convergent with a quadratic numerical rate of convergence. Some numerical test examples are taken from recently published articles to confirm the theoretical results and demonstrate a good performance of the current scheme.
Abstract : In this paper we obtain a new structure of a $k$-annihilating ideal hypergraph of a reduced ring $R$, by determine the order and size of a hypergraph $\mathcal{AG}_{k}(R)$. Also we describe and count the degree of every nontrivial ideal of a ring $R$ containing in vertex set $\mathcal{A}(R,k)$ of a hypergraph $\mathcal{AG}_{k}(R)$. Furthermore, we prove the diameter of $\mathcal{AG}_{k}(R)$ must be less than or equal to 2. Finally, we determine the minimal dominating set of a $k$-annihilating ideal hypergraph of a ring $R$.
Abstract : Let $\mathfrak{A}$ and $\mathfrak{B}$ be unital prime $*$-algebras such that $\mathfrak{A}$ contains a nontrivial projection. In the present paper, we show that if a bijective map $\Theta:\mathfrak{A}\to\mathfrak{B}$ satisfies $\Theta(_*[X\diamond Y, Z])={}_*[\Theta(X)\diamond \Theta(Y), \Theta(Z)]$ for all $X, Y, Z\in\mathfrak{A}$, then $\Theta$ or $-\Theta$ is a $*$-ring isomorphism. As an application, we shall characterize such maps in factor von Neumann algebras.
Abstract : The purpose of this paper is to introduce a new class of rings containing the class of SFT-rings and contained in the class of rings with Noetherian prime spectrum. Let $A$ be a commutative ring with unit and $I$ be an ideal of $A$. We say that $I$ is SFT if there exist an integer $k\geq 1$ and a finitely generated ideal $F\subseteq I$ of $A$ such that $x^k\in F$ for every $x\in I$. The ring $A$ is said to be nonnil-SFT, if each nonnil-ideal (i.e., not contained in the nilradical of $A$) is SFT. We investigate the nonnil-SFT variant of some well known theorems on SFT-rings. Also we study the transfer of this property to Nagata's idealization and the amalgamation algebra along an ideal. Many examples are given. In fact, using the amalgamation construction, we give an infinite family of nonnil-SFT rings which are not SFT.
Abstract : A class of systems of Caputo fractional differential equations with integral boundary conditions is considered. A numerical method based on a finite difference scheme on a uniform mesh is proposed. Supremum norm is used to derive an error estimate which is of order $\kappa-1$, $1
Abstract : This paper is concerned with the study of spacetimes satisfying $\mathrm{div}\mathcal{M}=0$, where ``div" denotes the divergence and $\mathcal{M}$ is the $m$-projective curvature tensor. We establish that a perfect fluid spacetime with $\mathrm{div}\mathcal{M}=0$ is a generalized Robertson-Walker spacetime and vorticity free; whereas a four-dimensional perfect fluid spacetime becomes a Robertson-Walker spacetime. Moreover, we establish that a Ricci recurrent spacetime with $\mathrm{div}\mathcal{M}=0$ represents a generalized Robertson-Walker spacetime.
Abstract : In this paper, we obtain certain estimates for averages of shifted convolution sums involving Hecke eigenvalues of classical holomorphic cusp forms. This generalizes some results of L\"{u} and Wang in this direction.
Tamem Al-Shorman, Malik Bataineh, Ece Yetkin Celikel
Commun. Korean Math. Soc. 2023; 38(2): 365-376
https://doi.org/10.4134/CKMS.c220169
Abhijit Banerjee, Arpita Kundu
Commun. Korean Math. Soc. 2023; 38(2): 525-545
https://doi.org/10.4134/CKMS.c220168
Goutam Kumar Ghosh
Commun. Korean Math. Soc. 2023; 38(2): 377-387
https://doi.org/10.4134/CKMS.c210303
Sugi Guritman
Commun. Korean Math. Soc. 2023; 38(2): 341-354
https://doi.org/10.4134/CKMS.c220110
Zied Douzi, Bilel Selmi, Haythem Zyoudi
Commun. Korean Math. Soc. 2023; 38(2): 491-507
https://doi.org/10.4134/CKMS.c220154
Shiv Sharma Shukla, Vipul Singh
Commun. Korean Math. Soc. 2023; 38(4): 1191-1213
https://doi.org/10.4134/CKMS.c220309
Vítor Hugo Fernandes
Commun. Korean Math. Soc. 2023; 38(3): 725-731
https://doi.org/10.4134/CKMS.c220272
OM P. AHUJA, Asena \c{C}etinkaya, NAVEEN KUMAR JAIN
Commun. Korean Math. Soc. 2023; 38(4): 1111-1126
https://doi.org/10.4134/CKMS.c230002
© 2022. The Korean Mathematical Society. Powered by INFOrang Co., Ltd