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DERIVATIONS ON DISTRIBUTIVE BILATTICES

Mohammad M. Atallah and Eman G. Rezk

Abstract. In this paper, a derivation is defined on a reduct or two

reducts of a distributive bilattice, with and without a relationship be-

tween derivations on reducts. The concept of a differential distributive
bilattice is introduced. The algebraic structure and properties are inves-

tigated. Characterization and Construction theorems are proved.

1. Introduction

In [23], G. Szász defined a derivation on lattice as an extension of derivation
concept on rings. After that X. L. Xin et al. in [26] and [25] modified the
divination of derivation to compatible with some applications in information
science. Many researches covered derivations, e.g. [13,16,21,24] and its gener-
alizations like an (F,G)-derivation [1], a symmetric bi-derivation [5], a higher
derivation [6], an (n,m) derivation [7], and others. M. L. Ginsberg [14] and
M. Fitting [11, 12] introduced bilattice as an algebra with two distinct lattice
structures. Bilattices used for algebraic representation of inferences in AI and
logical programming. The structure and applications of a bilattice are studied
by many authors e.g. [2, 17–19, 22]. The bilattice theory is growing very fast.
There are many relationships between two lattice structures of reducts of a
bilattice are introduced in many articles for example of an interlaced bilattice,
a modular bilattice, a distributive bilattice, a bilattice with negation, pseudo-
complemented bilattices, bi-double Stone algebra and bi-concept algebra refer
to [1,8–10,17–20]. This article is restricted on a distributive bilattice. A deriva-
tion is defined and some algebraic properties are investigated. A distributive
bilattice with differential reducts and a differential bilattice are defined and
important properties are proved. We consider that the reader is obligated to
lattice theory and for more details refer to [3, 4, 15].

Section 2 recalls the basics of a bilattice and a derivation used in the next
sections. In Section 3, a derivation on one reduct of a distributive bilattice is
defined and some related algebraic results are proved. Section 4 introduces the
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concept of a distributive bilattice with differential reducts. The necessary and
sufficient conditions for differential reducts are given and associated properties
are shown. Finally, in Section 5 a differential distributive bilattice is defined
and its algebraic structure is investigated.

2. Preliminaries

Here we present the most important terms and results related to bilattices
and derivations, on which the rest of the article depends.

2.1. Terminology of a bilattice

Definition ([14]). An algebra B = (B;∧,∨, 01, 11, •,+, 02, 12) is a bounded
bilattice if B1 = (B;∧,∨, 01, 11) and B2 = (B; •,+, 02, 12) are bounded lat-
tices.

B1 is the first reduct of a bilattice B associate with order relation ≤1 and
B2 is the second reduct associate with order relation ≤2. Both B1 and B2 are
called the main reducts of a bilattice B.

Definition ([17]). An interlaced bilattice is a bounded bilattice that satisfies
that: for all u, v, u′, v′ ∈ B, such that u ≤i u

′, and v ≤i v
′, and i = 1, 2

u ∧ v ≤i u
′ ∧ v′, u ∨ v ≤i u

′ ∨ v′,

u • v ≤i u
′ • v′, and u+ v ≤i u

′ + v′.

A bilatticeB is distributive if and only if any operation of the set {∧,∨, •,+}
of binary operations distributes over the others. Every distributive bilattice is
interlaced.

Let L1 = (L1;∧1,∨1, 0, 1) and be bounded L2 = (L2;∧2,∨2, 0
′, 1′) lattices.

The product bilattice associated with L1 and L2 is defined as: B(L1,L2) =
(L1 × L2;∧,∨, 01, 11, •,+, 02, 12) such that:

(u, v) ∧ (u′, v′) = (u ∧1 u
′, v ∨2 v

′),

(u, v) ∨ (u′, v′) = (u ∨1 u
′, v ∧2 v

′),

(u, v) • (u′, v′) = (u ∧1 u
′, v ∧2 v

′),

(u, v) + (u′, v′) = (u ∨1 u
′, v ∨2 v

′),

for all (u, v), (u′, v′) ∈ L1 × L2, see [26].
To deduce the structure and representation theorems of interlaced bilattices

positive and negative elements are defined as follows.

Definition ([17]). Let B = (B;∧,∨, 01, 11, •,+, 02, 12) be an interlaced bilat-
tice. Then:

i) u ∈ B is a positive element if u ≤1 v =⇒ u ≤2 v for any v ∈ B;
ii) u ∈ B is a negative element if u ≤1 v =⇒ v ≤2 u for any v ∈ B.
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POS(B) indicates to the set of all positive elements and NEG(B) indicates
to the set of all negative elements. In general POS(B) = [02, 11]≤1

= [02, 11]≤2

and NEG(B) = [02, 01]≥1 = [02, 01]≤2 , see [17] and [2].

Theorem 2.1 ([2,11]). (Characterization Theorem) A bilattice B = (B;∧,
∨, 01, 11, •,+, 02, 12) is an interlaced (distributive) if and only if there exist
bounded (distri-butive) lattices L1 = (L1;∧1,∨10, 1) and L2 = (L1;∧2,∨20

′, 1′)
such that B ∼= B(L1,L2).

In particular, B(POS(B), NEG(B)) = (POS(B)×NEG(B);∧′,∨′, 0′1, 1
′
1,

•,+′, 0′2, 1
′
2) such that:

(u, v) ∧′ (u′, v′) = (u ∧ u′, v ∨ v′) = (u • u′, v • v′),
(u, v) ∨′ (u′, v′) = (u ∨ u′, v ∧ v′) = (u+ u′, v + v′),

(u, v) • (u′, v′) = (u ∧ u′, v ∧ v′) = (u • u′, v + v′),

(u, v) +′ (u′, v′) = (u ∨ u′, v ∨ v′) = (u+ u′, v • v′)
for all (u, v), (u′, v′) ∈ POS(B)×NEG(B),

0′1 = (01, 12), 1
′
1 = (11, 02), 0

′
2 = (01, 02), and 1′2 = (11, 12).

Accordingly, B ∼= B(POS(B), NEG(B)).
In the following

POS(B)≤1
= (POS(B);∧,∨, 02, 11),

POS(B)≤2 = (POS(B); •,+, 02, 11),
NEG(B)≤1

= (NEG(B);∧,∨, 01, 02), and
NEG(B)≤2

= (NEG(B); •,+, 02, 01).

2.2. Terminology of a derivation

Definition ([26]). Let L = (L;∧,∨) be a lattice and ϑ : L −→ L be a map.
Then ϑ is called a derivation on L if it satisfies that:

ϑ(u ∧ v) = (ϑ(u) ∧ v) ∨ (u ∧ ϑ(v)),
for any u, v ∈ L.

A differential lattice L = (L;∧,∨, ϑ, 0, 1) is a bounded lattice (L;∧,∨, 0, 1)
with derivation ϑ. An isotone derivation is satisfying that:

If u ≤ v, then ϑ(u) ≤ ϑ(v).

Proposition 2.2 ([26]). Let L = (L;∧,∨, ϑ, 0, 1) be a differential lattice. Then:

i) ϑ(u) ≤ u and ϑ(0) = 0;
ii) ϑ(u) ∧ ϑ(v) ≤ ϑ(u ∧ v) ≤ ϑ(u) ∨ ϑ(v);
iii) I is an ideal of L =⇒ ϑ(I) ⊆ I;
iv) ϑ(u) = (u ∧ ϑ(1)) ∨ ϑ(u);
v) v ≤ u = ϑ(u) =⇒ ϑ(v) = v;
vi) ϑ(u) = ϑ(u) ∨ (u ∧ ϑ(u ∨ v));
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vii) ϑ is idempotent i.e., ϑ(ϑ(u)) = ϑ(u).

Corollary 2.3 ([26]). Let L = (L;∧,∨, ϑ, 0, 1) be a differential lattice. Then:

i) u ≥ ϑ(1) =⇒ ϑ(u) ≥ ϑ(1);
ii) u ≤ ϑ(1) =⇒ ϑ(u) = u;
iii) ϑ(1) = 1 if and only if ϑ is an identity derivation.

3. Distributive bilattices with one differential reduct

In this section, the derivation on a reduct of a distributive bilattice is defined.
Some algebraic properties are proved.

Definition. A distributive bilattice with first differential reduct B = (B;∧,∨,
ϑ, 01, 11, •,+, 02, 12) is a distributive bilattice with a derivation ϑ on the first
reduct B1 = (B;∧,∨, 01, 11).

Example 3.1. Consider the distributive bilattice in Figure 1. A map ϑ :
B1 −→ B1 defined as:

ϑ(u) =

{
01 for u = 01, 02, a, b and c
12 for u = 11, 12, d, e and f

is a derivation on the first reduct B1. So, it is a distributive bilattice with the
first differential reduct.

Consider two differential lattices L = (L;∧,∨, ϑ, 0, 1) and K = (K;∧,∨, ϑ′,
0′, 1′), then a homomorphism ϕ : L −→ K is preserving derivation if ϕ(ϑ(u)) =
ϑ′(ϕ(u)) for all u ∈ L. Assume derivations ϑP : POS(B)≤1

−→ POS(B)≤1

and ϑN : NEG(B)≤1
−→ NEG(B)≤1

are defined as ϑP (u•11) = ϑ|POS(B)(u•
11) and ϑN (u • 01) = ϑ|NEG(B)(u • 01). Then we get the following results.

Figure 1. Distributive bilattice B with first differential reduct
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Lemma 3.2. Let B = (B;∧,∨, ϑ, 01, 11, •,+, 02, 12) be a distributive bilattice
with first differential reduct B1 = (B;∧,∨, ϑ, 01, 11). Then for any u ∈ B,

i) The onto homomorphism map αP : B1 −→ POS≤1(B) defined as
αP (u) = u • 11 is preserving the derivation if and only if ϑ(u • 11) =
ϑ(u) • 11;

ii) The onto homomorphism map αN : B1 −→ NEG≤1
(B) defined as

αN (u) = u • 01 is preserving the derivation if and only if ϑ(u • 01) =
ϑ(u) • 01.

Proposition 3.3. Let B = (B;∧,∨, ϑ, 01, 11, •,+, 02, 12) be a distributive bi-
lattice with first differential reduct, αP and αN be onto homomorphism maps
which preserve derivations. Then for any u, v ∈ B,

ϑP (αP (u) ∧ αP (v)) = αP (ϑ(u ∧ v)) and

ϑN (αN (u) ∧ αN (v)) = αN (ϑ(u ∧ v)).

Proof.

ϑP (αP (u) ∧ αP (v)) = (ϑP (αP (u)) ∧ αP (v)) ∨ (αP (u) ∧ ϑP (αP (v)))

= (αP (ϑ(u)) ∧ αP (v)) ∨ (αP (u) ∧ αP (ϑ(v))

= αP (ϑ(u) ∧ v) ∨ αP (u ∧ ϑ(v))
= αP ((ϑ(u) ∧ v) ∨ (u ∧ ϑ(v))) = αP (ϑ(u ∧ v)).

Similarly, the second part can be proven. □

Theorem 3.4. Let B = (B;∧,∨, ϑ, 01, 11, •,+, 02, 12) be a distributive bilattice
with first differential reduct, αP and αN be onto homomorphisms which preserve
derivations. Then for any u, v ∈ B;

i) αP (ϑ(u)) ≤1 αP (u) and αN (ϑ(u)) ≤1 αN (u);
ii) αP (ϑ(u) ∧ ϑ(v)) ≤1 αP (u) ∧ αP (v) and αN (ϑ(u) ∧ ϑ(v)) ≤1 αN (u) ∧

αN (v);
iii) αP (ϑ(u)) ∧ αP (ϑ(v)) ≤1 ϑP (αP (u ∧ v)) ≤1 αP (u) ∨ αP (v) and

αN (ϑ(u)) ∧ αN (ϑ(v)) ≤1 ϑN (αN (u ∧ v)) ≤1 αN (u) ∨ αN (v);
iv) If I is an ideal of B1, then αP (ϑ(I)) ⊆ αP (I) and αN (ϑ(I)) ⊆ αN (I);
v) If u ≤1 v and ϑ(v) = v, then αP (ϑ(u)) = αP (u) and αN (ϑ(u)) =

αN (u).

Proof. i) αP (ϑ(u)) = ϑP (αP (u)) ≤1 αP (u).
ii) αP (ϑ(u) ∧ ϑ(v)) = αP (ϑ(u)) ∧ αP (ϑ(v)) = ϑP (αP (u)) ∧ ϑP (αP (v)) ≤1

αP (u) ∧ αP (v).
iii) αP (ϑ(u)) ∧ αP (ϑ(v)) = αP (ϑ(u) ∧ ϑ(v)) ≤1 αP (ϑ(u ∧ v)) = ϑP (αP (u ∧

v)) ≤1 αP (ϑ(u) ∨ ϑ(v)) = αP (ϑ(u)) ∨ αP (ϑ(v)) = ϑP (αP (u)) ∨ ϑP (αP (v)) ≤1

αP (u) ∨ αP (v).
iv) If I is an ideal of B1, then αP (ϑ(I)) = ϑP (αP (I)) ⊆ αP (I), (from (iii)

in Proposition 2.2.
v) Immediately from v) in Proposition 2.2. □
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Proposition 3.5. Let B = (B;∧,∨, ϑ, 01, 11, •,+, 02, 12) be a distributive bi-
lattice with first differential reduct, αP and αN be onto homomorphisms which
preserve derivations. Then for any u, v ∈ B;

i) αP (ϑ(02)) = 02 and αN (ϑ(01)) = 01;
ii) αP (ϑ(11)) ≤1 11 and αN (ϑ(02)) ≤1 02;
iii) If ϑ(11) ≤1 u, then ϑP (11) ≤1 αP (u) and ϑN (02) ≤1 αN (u);
iv) If u ≤1 ϑ(11), then αP (ϑ(u)) = αP (u) and αN (ϑ(u)) = αN (u);
v) αP (ϑ(11)) = 11 and αN (ϑ(11)) = 02 if and only if ϑ is the identity

derivation.

Proof. i) αP (ϑ(02)) = ϑP (αP (02)) = ϑP (02) = 02.
ii) αP (ϑ(11)) = ϑP (αP (11)) ≤1 αP (11) = 11.
iii) If ϑ(11) ≤1 u, then αP (ϑ(11)) ≤1 αP (u). From i) in Corollary 2.3 we have

ϑ(11) ≤1 ϑ(u). Hence αP (ϑ(11)) ≤1 αP (u). But αP (ϑ(11)) = ϑP (αP (11)) =
ϑP (11). So ϑP (12) ≤1 αP (u).

iv) Immediately from ii) in Corollary 2.3.
v) Using iii) in Corollary 2.3, we get ϑ is identity derivation if and only if

ϑ(11) = 11 if and only if αP (ϑ(11)) = ϑ(11)•11 = 11•11 = 11 and αN (ϑ(11)) =
ϑ(11) • 01 = 02. □

The following example explains the above results.

Example 3.6. Consider the distributive bilattice with first differential reduct
in Example 3.1. If we consider derivations ϑP and ϑN which are defined as:

ϑP (u) =

{
02 for u = 02
11 for u = 11

and

ϑN (u) = 01.

Then the following onto homomorphisms:

αP (u) = u • 11 =

{
02 for u = 01, 02, a, b and c
11 for u = 11, 12, d, e and f

and

αN (u) = u • 01 =


01 for u = 01 and 12
a for u = a and e
b for u = b and f
c for u = c and d
02 for u = 02 and 11

are preserving derivations ϑP and ϑN on POS(B)≤1 and NEG(B)≤1 respec-
tively to ϑ on first reduct B1, for example:

αP (ϑ(c)) = 02 = ϑP (αP (c)) = ϑP (02);

αP (ϑ(e)) = 11 = ϑP (αP (e)) = ϑP (11);

and so on.
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Figure 2. Differential reduct B1, POS(B), NEG(B)

If we consider other derivations on POS(B)≤1
and NEG(B)≤1

, the given
homomorphisms αP and αN do not preserve these derivations. For example,
for derivations ϑP (u) = 02 and ϑN (u) = u on POS(B)≤1 and NEG(B)≤1 ,
respectively, we get αP (ϑ(e)) = 11 ̸= ϑP (αP (e)) = ϑP (11) = 02.

Definition. A distributive bilattice with second differential reduct B = (B;∧,
∨, 01, 11, •,+, ϑ′, 02, 12) is a distributive bilattice with derivation ϑ′ on the sec-
ond reduct B2 = (B; •,+, 02, 12).

Consider derivations ϑ′P : POS(B)≤2 −→ POS(B)≤2 and ϑ′N : NEG(B)≤2

−→ NEG(B)≤2
defined as: ϑ′P (u • 11) = ϑ′|POS(B)(u • 11) and ϑ′N (u •

01) = ϑ′|NEG(B)(u • 01). Thus, by using onto homomorphisms βP : B2 −→
POS≤2(B) and βN : B2 −→ NEG≤2(B) defined as: βP (u) = u • 11 and
βN (u) = u•01, corresponding results about a distributive bilattice with second
differential reduct can be proved.

4. Distributive bilattices with differential reducts

In the previous section, we explore that the derivation can be defined on one
reduct of a distributive bilattice. In this section, we will discuss the derivations
on both reducts.

Definition. A distributive bilattice with differential reducts B = (B;∧,∨, ϑ,
01, 11, •,+, ϑ′, 02, 12) is a distributive bilattice with two derivations ϑ and ϑ′

on the first and the second reducts, respectively.

Theorem 4.1. (Characterization Theorem) Let B = (B;∧,∨, ϑ, 01, 11, •,
+, ϑ′, 02, 12) be a distributive bilattice with differential reducts. Then: ϑ (ϑ′)
is a derivation on the first reduct B1 (the second reduct B2) if and only if
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there exist two derivations on POS(B)≤1
and NEG(B)≤1

(POS(B)≤2
and

NEG(B)≤2
) which are preserved under an onto homomorphism.

Proof. Let ϑ be a derivation on the first reduct B1, αP and αN be the onto
homomorphisms defined in Lemma 3.2 and u ∈ B1. Then αP (ϑ(u)) = ϑ(u)•11
and ϑ|POS(B)(u • 11) = ϑ(u) • 11. So, ϑ|POS(B)(αP (u)) = αP (ϑ(u)) and the
restriction of derivation ϑ on POS(B) is appropriate considered derivation on
POS(B). Also αN (ϑ(u)) = ϑ(u) • 01 and ϑ|NEG(B)(αN (u)) = ϑ(u) • 01. Thus
ϑ|NEG(B)(αN (u)) = αN (ϑ(u)) and the restriction of derivation ϑ on NEG(B)
is appropriate considered a derivation on NEG(B).

For the other direction, assume ϑP and ϑN are two derivations on POS(B)
and NEG(B), respectively. Define a map ϑ on first reduct B1 as ϑ(u) =
ϑP (αP (u)) + ϑN (αN (u)). Now we prove that ϑ is a derivation on B1.

ϑ(u ∧ w)
= ϑP (αP (u ∧ w)) + ϑN (αN (u ∧ w))
= ϑP ((u ∧ w) • 11) + ϑN ((u ∧ w) • 01)
= ϑP ((u • 11) ∧ (w • 11)) + ϑN ((u • 01) ∧ (w • 01))
= [(ϑP (u • 11) ∧ (w • 11)) ∨ ((u • 11) ∧ ϑP (w • 11))]
+ [(ϑN (u • 01) ∧ (w • 01)) ∨ ((u • 01) ∧ ϑN (w • 01))]

= [(ϑP (u • 11) ∧ w) ∨ (u ∧ ϑP (w • 11))]
+ [(ϑN (u • 01) ∧ w)) ∨ ((u ∧ ϑN (w • 01))]

= [(ϑP (u • 11) ∧ w) + (ϑN (u • 01) ∧ w)]
∨ [(ϑP (u • 11) ∧ w) + ((u ∧ ϑN (w • 01))]
∨ [(u ∧ ϑP (w • 11)) + (ϑN (u • 01) ∧ w]
∨ [(u ∧ ϑP (w • 11)) + (u ∧ ϑN (w • 01)]

= [w ∧ (ϑP (u • 11) + ϑN (u • 01))] ∨ [(ϑP (u • 11) ∧ w) + ((u ∧ ϑN (w • 01))]
∨ [(u ∧ ϑP (w • 11)) + (ϑN (u • 01) ∧ w] ∨ [u ∧ (ϑP (w • 11) + ϑN (w • 01))]

= [w ∧ (ϑ(u)] ∨ [u ∧ (ϑ(w)] ∨ [(ϑP (u • 11) ∧ w) + (u ∧ ϑN (w • 01))]
∨ [(u ∧ ϑP (w • 11)) + (ϑN (u • 01) ∧ w]

= (w ∧ (ϑ(u)) ∨ (u ∧ (ϑ(w)).

To show the derivation ϑ is preserved under the onto homomorphism,
ϑP (αP (u)) = ϑP (u∧12) and αP (ϑ(u)) = ϑ(u)•11 = (ϑP (αP (u))+ϑN (αN (u)))•
11 = (ϑP (u • 11)+ϑN (u • 01)) • 11 = (ϑP (u • 11) • 11)+ (ϑN (u • 01) • 11). Since
ϑN (u•01) ≤1 02 meeting inequalities by 11 we get ϑN (u•01)•11 ≤1 02•11 = 02.
Therefore, (ϑP (u•11)•11)+(ϑN (u•01)•11) = ϑP (u•11)+02 = ϑP (u•11) and
so αP (ϑ(u)) = ϑP (αP (u)). Similarly, we can obtain αN (ϑ(u)) = ϑN (αN (u)).

□
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Theorem 4.2. Let B = (B;∧,∨, ϑ, 01, 11, •,+, ϑ′, 02, 12) be a distributive bi-
lattice with differential reducts. Then:

i) ϑ(ϑ′) is isotone if and only if corresponding derivations on POS(B)
and NEG(B) are isotones;

ii) ϑ(ϑ′) is one-to-one if and only if corresponding derivations on POS(B)
and NEG
(B) are one-to-one;

iii) ϑ(ϑ′) is onto if and only if corresponding derivations on POS(B) and
NEG(B) are onto.

Proof. i) Let ϑ be isotone and u, v ∈ B1 such that u ≤1 v. Then u • 11 ≤
v • 11, u • 01 ≤ v • 01, and ϑ(u) ≤1 ϑ(v). By using onto homomorphisms
αN and αN in Lemma 3.2, we obtain αP (ϑ(u)) ≤1 αP (ϑ(v)) and αN (ϑ(u)) ≤1

αN (ϑ(v)). Suppose ϑP and ϑN are corresponding derivations on POS(B1) and
NEG(B1) respectively. But, αP (ϑ(u)) = ϑP (αP (u)) = ϑP (u•11), αP (ϑ(v)) =
ϑP (αP (v)) = ϑP (v •11), αN (ϑ(u)) = ϑN (αP (u)) = ϑN (u•01) and αN (ϑ(v)) =
ϑN (αP (v)) = ϑN (v • 01). Accordingly, ϑP (u • 11) ≤1 ϑP (v • 11) and ϑN (u •
01) ≤1 ϑN (v • 01) and hence ϑP and ϑN are isotone. Conversely, let ϑP and
ϑN be isotone and u, v ∈ B such that u ≤1 v. Then u • 11 ≤1 v • 11 and
u • 01 ≤1 v • 01. Thus ϑP (u • 11) ≤1 ϑP (v • 11) and ϑN (u • 01) ≤1 ϑN (v • 01).
Since ϑ(u) = ϑP (αP (u)) + ϑN (αN (u)) = ϑP (u • 11) + ϑN (u • 01) and ϑ(v) =
ϑP (αP (v)) + ϑN (αN (v)) = ϑP (v • 11) + ϑN (v • 01). Therefore ϑ(u) ≤1 ϑ(v)
and ϑ is isotone.

ii) If ϑ is one-to-one, then αP (ϑ(u)) = αP (ϑ(v)) and αN (ϑ(u)) = αN (ϑ(v)).
Thus ϑP (u•11) = ϑP (v•11) and ϑN (u•01) = ϑN (v•01). But, u•11 = v•11 and
u•01 = v•01. Hence ϑP and ϑN are one-to-one. In the opposite direction, if ϑP
and ϑN are one-to-one, then ϑP (u•11) = ϑP (v•11) and ϑN (u•01) = ϑN (v•01),
imply u • 11 = v • 11 and u • 01 = v • 01. So, ϑ(u) = ϑP (u • 11) + ϑN (u • 01) =
ϑP (v•11)+ϑN (v•01) = ϑ(v). But u = (u•11)+(u•01) = (v•11)+(v•01) = v.
Therefore ϑ is one-to-one.

iii) Let for every v ∈ B1 there be u ∈ B1 such that ϑ(u) = v. Then
αP (ϑ(u)) = ϑP (u•11) = αP (v) = v•11 and αN (ϑ(u)) = ϑN (u•01) = αN (v) =
v • 01. Conversely, let ϑP and ϑN be onto. Then for every v • 11POS(B) and
v ∧ 02 ∈ NEG(B) there exist u ∧ 12 ∈ POS(B) and u ∧ 02 ∈ NEG(B) such
that ϑP (u•11) = v•11 and ϑN (u•01) = v•01. Thus for arbitrary u ∈ B1 there
exists v ∈ B1 such that ϑ(u) = ϑP (u•11)+ϑN (u•01) = (v •11)+(v •01) = v.
Hence ϑ is onto. □

The next example illustrates that, if there is a lattice isomorphism between
two reducts of distributive bilattice with differential reducts it does not neces-
sarily preserve derivations on the two reducts.

Example 4.3. Consider a distributive bilattice B with differential reducts in
Figure 3, ϑ is the identity map and ϑ′ is defined as
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ϑ′(u) =


02 for u = 02, b, and g
c for u = a, c, and 01
f for u = e, f, and 12
11 for u = d, h, and 11.

Consider an isomorphism map ϕ : B1 −→ B2 defined as

ϕ(u) =



01 for u = 02, e for u = d,
12 for u = 11, f for u = h,
a for u = g, g for u = a,
b for u = c, h for u = f,
c for u = b, 02 for u = 01,
d for u = e, 11 for u = 12.

Note that ϕ does not preserve a derivation, e.g.,

ϕ(ϑ(a)) = ϕ(a) = g ̸= ϑ′(ϕ(a)) = ϑ′(g) = 02.

Figure 3. Distributive bilattice with differential reducts B

5. Differential distributive bilattices

In this section we solve the problem: under what conditions the two reducts
of a distributive bilattice are isomorphic differential lattices. The concept of a
differential distributive bilattice is defined, algebraic properties and construc-
tion theorem are proved.

Two differential lattices L = (L;∧,∨, ϑ, 0, 1) and K = (K;∧,∨, ϑ′, 0′, 1′) are
isomorphic if there exists a lattice isomorphism ϕ : L −→ K which is preserving
derivations, see [13].
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Definition. A differential distributive bilattice B = (B;∧,∨, ϑ, 01, 11, •,+, ϑ′,
02, 12) is a distributive bilattice with isomorphic differential reducts B1 =
(B;∧,∨, ϑ, 01, 11, ) and B2 = (B; •,+, ϑ′, 02, 12).

Let B = (B;∧,∨, ϑ, 01, 11, •,+, ϑ′, 02, 12) be a differential distributive bi-
lattice and ϕ : B1 −→ B2 is an isomorphism. Consider the isomorphisms
ψ : POS(B)≤1

−→ POS≤2
(B) and λ : NEG≤1

(B) −→ NEG≤2
(B) defined

as ψ(u • 11) = ϕ(u) • 11 and λ(u • 01) = ϕ(u) • 01. Then we have the following
properties:

Proposition 5.1. i) ψ, ψ−1, λ and λ−1 are preserving derivations;
ii) ψ ◦αP = βP ◦ϕ, ψ−1 ◦βP = αP ◦ϕ−1, λ◦αN = βN ◦ϕ and λ−1 ◦βN =

αN ◦ ϕ−1;
iii) ϕ(12) = 11 and ϕ(02) = 01.

Proof. i) ψ(ϑP (u • 11)) = ψ(ϑ(u) • 11)) = ϕ(ϑ(u)) • 11 = ϑ′(ϕ(u)) • 11 =
ϑ′P (ϕ(u) • 11) = ϑ′(ψ(u • 11)) = ϑ′P (ψ(u • 11)).

ii) For an arbitrary element u ∈ B1, we have that

(ψ ◦ αP )(u) = ψ(αP (u)) = ψ(u • 11) = ϕ(u) • 11 = βP (ϕ(u)) = (βP ◦ ϕ)(u).
iii) Assume that ϕ(12) ̸= 11. Then there exists v ∈ B2 such that ϕ(12) = v,

v ̸= 11, and ϕ(u) = 11 for some u ∈ B1. Since ϕ is an isomorphism, ϕ(u) ≤2

ϕ(12). Consequently, 11 = ϕ(u) = ϕ(12) • ϕ(u) = v • 11. So v ≤2 11 implies
ϕ(12) ≤2 ϕ(u) = 11, which is a contradiction. Therefore ϕ(12) = 11.

Similarly, other parts can be proven. □

The following diagrams in Figure 4 clarify Proposition 5.1.

Figure 4.

Proposition 5.2. Let B = (B;∧,∨, ϑ, 01, 11, •,+, ϑ′, 02, 12) be a differential
distributive bilattice. Then:

i) ϕ◦ϑ|POS(B) is a derivation on POS(B) and ϕ◦ϑ|NEG(B) is a deriva-
tion on NEG(B);

ii) ϕ−1 ◦ ϑ′|POS(B) is a derivation on POS(B) and ϕ−1 ◦ ϑ′|NEG(B) is a
derivation on NEG(B);

iii) ϑ(u) = ϑP (ψ
−1(u • 11)) + ϑN (λ−1(u • 01));

iv) ϑ′(u) = ϑ′P (ψ(u • 11)) + ϑ′N (λ(u • 11)).
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Proposition 5.3. Let B = (B;∧,∨, ϑ, 01, 11, •,+, ϑ′, 02, 12) be a differential
distributive bilattice. Then:

i) ϑ is isotone if and only if ϑ′ is isotone;
ii) ϑ is one-to-one if and only if ϑ′ is one-to-one;
iii) ϑ is onto if and only if ϑ′ is onto.

Theorem 5.4. (Construction Theorem) Let (L1;∧1,∨1, ϑ1, 0, 1) and (L2;
∧2,∨2, ϑ2, 0

′, 1′) be two differential distributive lattice. If there exist an isomor-
phism ρ : L∂

2 −→ L2 and a derivation ϑ′2 on L∂
2 such that:

(ρ ◦ ϑ′2)(a) = (ϑ2 ◦ ρ)(a), for all a ∈ L2.

Then the product bilattice B(L1,L2) is a differential distributive.

Proof. Assume (u1, u2), (v1, v2) ∈ B(L1,L2), ϑ is a derivation on the first
reduct B1(L1,L2) defined as: ϑ((u1, u2)) = (ϑ1(u1), ϑ

′
2(u2)). Thus:

ϑ((u1, u2) ∧ (v1, v2))

= ϑ((u1 ∧1 v1, u2 ∨2 v2))

= (ϑ1(u1 ∧1 v1), ϑ
′
2(u2 ∨2 v2))

= ((ϑ1(u1) ∧1 v1) ∨1 (u1 ∧1 ϑ1(v1)), (ϑ
′
2(u2) ∨2 v2) ∧2 (u2 ∨2 ϑ

′
2(v2)))

= (ϑ1(u1) ∧1 v1, ϑ
′
2(u2) ∨2 v2) ∨ ((u1 ∧1 ϑ1(v1), (u2 ∨2 ϑ

′
2(v2))

= (ϑ(u1, u2) ∧ (v1, v2)) ∨ ((u1, u2) ∧ ϑ(v1, v2)).

Similarly, we can prove that a map ϑ′((u1, u2)) = (ϑ1(u1), ϑ2(u2)) is a
derivation on the second reduct B2(L1,L2). Define a map ϕ : B1(L1,L2) −→
B2(L1,L2) as:

ϕ(u1, u2) = (u1, ρ(u2)), for all (u1, u2) ∈ B(L1,L2).

To prove that ϕ is an isomorphism, it is enough to show that ϕ is a homomor-
phism preserving the derivation.

ϕ((u1, u2) ∧ (v1, v2)) = ϕ((u1 ∧1 v1, u2 ∨2 v2))

= (u1 ∧1 v1, ρ(u2 ∨2 v2))

= (u1 ∧1 v1, ρ(u2) ∨2 ρ(v2))

= (u1 ∧1 v1, u2 ∧2 v2),

ϕ((u1, u2) ∨ (v1, v2)) = ϕ((u1 ∨1 v1, u2 ∧2 v2))

= (u1 ∨1 v1, ρ(u2 ∧2 v2))

= (u1 ∨1 v1, ρ(u2) ∧2 ρ(v2))

= (u1 ∨1 v1, u2 ∨2 v2),

(ϕ ◦ ϑ)((u1, u2)) = ϕ(ϑ((u1, u2)))

= ϕ((ϑ1(u1), ϑ
′
2(v2))
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= (ϑ1(u1), ρ(ϑ
′
2(v2))

= (ϑ1(u1), ϑ2(ρ(v2)))

= ϑ′((u1, ρ(u2)))

= ϑ′(ϕ((u1, u2)))

= (ϑ′ ◦ ϕ)((u1, u2)). □
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