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RHOMBIC NUMERICAL RADIUS INEQUALITIES FOR

HILBERT C∗-MODULES

Nordine Bounader and Mohammed Hassaouy

Abstract. In this paper, a new definition of the Rhombic numerical

radius of two adjointable operators in Hilbert C∗-module space will be
introduced, and some inequalities between the operator norm and the

Rhombic numerical radius will be discussed, as well as some new results.
The results of the present paper can be utilized to generalize some new

refinements of the Rhombic numerical radius inequalities of two bounded

operators on Hilbert spaces to bounded adjointable operators on Hilbert
C∗-module spaces.

1. Introduction

Let (H; ⟨·, ·⟩) be a complex Hilbert space and denote by B(H) the set of all
bounded linear operators on H. The numerical radius of T ∈ B(H) is defined
by [8]:

(1) w(T ) = sup{|⟨Tx, x⟩| : x ∈ H, ∥x∥ = 1}.
It is well known that w(·) defines a norm on B(H), which is equivalent to the
usual operator norm ∥ · ∥. In fact, for any T ∈ B(H),

(2) w(T ) ≤ ∥T∥ ≤ 2w(T ).

Kittaneh proved that for any T ∈ B(H),

(3) w(T ) ≤ 1

2
∥|A|+ |A∗|∥ ≤ 1

2
(∥T∥+ ∥T 2∥ 1

2 ),

and

(4)
1

4
∥T ∗T + TT ∗∥ ≤ w2(T ) ≤ 1

2
∥T ∗T + TT ∗∥.

The above inequalities can be found in [11, 12], respectively. For other results
on the numerical radius (see [5], [6], [11], [14], [20]).
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Let (C,D) be a pair of bounded linear operators on H. The Rhombic numerical
radius is defined by [2]:

(5) wR(C,D) = sup

{
|⟨Cx, x⟩|+ |⟨Dx, x⟩| : x ∈ H, ∥x∥ = 1

}
.

We can also consider the following norm on B2(H) := B(H)×B(H), by

∥(C,D)∥ = sup

{
|⟨Cx, y⟩|+ |⟨Dx, y⟩| : x ∈ H, ∥x∥ = ∥y∥ = 1

}
.

In [2, Th. 2.4], it is proved that if C,D are bounded linear operators on H,
then

(6) w(C2 +D2) ≤ w2
R(C,D).

There are many inequalities involving the Rhombic numerical radius (see [2]).
By a Hilbert C∗-module, we mean a linear space with an inner product that
takes values in a C∗-algebra. This idea initially arose in a paper by Kaplansky
(see [10]), who created the theory for commutative unital algebras. Paschke (see
[17]) and Rieffel (see [19]) expanded the theory to include general C∗-algebras.
For further details (see [4,13,16]). The different structure of Hilbert C∗-modules
makes it appear that different definitions of some concepts, which are natural
extensions of some standard definitions, are required for studying some inequal-
ities in Hilbert C∗-modules, even though it is possible to prove some inequalities
in Hilbert C∗-module spaces using standard methods. Our new definitions of
the Rhombic numerical radius and numerical radius for bounded adjointable
operators on Hilbert C∗-modules are the natural extensions of these concepts
to operators on Hilbert spaces and they appear in this work. We establish some
basic inequalities for the Rhombic numerical radius of two bounded adjointable
operators on Hilbert C∗-modules, using these definitions and specialized meth-
ods.

We recall some fundamental definitions in the theory of Hilbert modules
that will be used in this paper.

Definition 1.1 ([3]). Let A be a C∗-algebra. An inner-product A-module is a
linear space E which is a rightA-module (with compatible scalar multiplication:

λ(xa) = (λx)a = x(λa) for all x ∈ E, a ∈ A and λ ∈ C),
together with a map ⟨·, ·⟩ : E × E −→ A, which has the following properties:

(i) ⟨x, x⟩ ≥ 0, if ⟨x, x⟩ = 0 then x = 0,
(ii) ⟨x, αy + βz⟩ = α⟨x, y⟩+ β⟨x, z⟩,
(iii) ⟨x, ya⟩ = ⟨x, y⟩a,
(iv) ⟨x, y⟩∗ = ⟨y, x⟩,

for all x, y, z ∈ E, a ∈ A, α, β ∈ C.

We can define a norm on E by ∥x∥ = ∥⟨x, x⟩∥ 1
2 . An inner-product A-module

that is complete concerning its norm is called a Hilbert A-module, or a Hilbert
C∗-module over the C∗-algebra A. We define L(E) which is a C∗-algebra to
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be the set of all maps T : E −→ E for which there is a map T ∗ : E −→ E
which satisfies ⟨Tx, y⟩ = ⟨x, T ∗y⟩ for all x, y ∈ E. Let L−1(E) denote the set
of all invertible operators in L(E).

Definition 1.2 ([16, page 89]). A state on a C∗-algebra A is a positive linear
functional on A of norm one. We denote the state space of A by S(A).

Definition 1.3 ([15]). Suppose that E is a Hilbert right A-module. We define
the numerical radius of T ∈ L(E) by

(7) wA(T ) = sup{|ϱ⟨x, Tx⟩| : x ∈ E, ϱ ∈ S(A), ϱ⟨x, x⟩ = 1}.

Definition 1.4 ([18]). Suppose that E is a Hilbert right A-module. We define
the Euclidean operator radius of B,C ∈ L(E) by

(8)

we(B,C)

= sup

{(
|ϱ⟨x,Bx⟩|2 + |ϱ⟨x,Cx⟩|2

) 1
2

: x ∈ E, ϱ ∈ S(A), ϱ⟨x, x⟩ = 1

}
.

In order to drive our main results, we need the following lemmas:

Lemma 1.1 ([15]). wA(T ) = ∥T∥ for every self-adjoint element of L(E).

Lemma 1.2 ([17]). For T ∈ L(E), we have

(9) ⟨Tx, Tx⟩ ≤ ∥T∥2⟨x, x⟩ for every x ∈ E.

Remark 1.3. It follows from (9) that for every positive linear functional ϱ,

ϱ⟨Tx, Tx⟩ ≤ ∥T∥2ϱ⟨x, x⟩ for every x ∈ E.

Lemma 1.4 ([16, page. 88, Theorem 3.3.2]). Let A be a C∗-algebra. If ϱ is a
positive linear functional on A, then

ϱ(a∗) = ϱ(a), for all a ∈ A.

Lemma 1.5 ([15]). Let T ∈ L(E) and ϱ ∈ S(A). The following statements
are equivalent:

a) ϱ⟨x, Tx⟩ = 0 for every x ∈ E with ϱ⟨x, x⟩ = 1,
b) ϱ⟨x, Tx⟩ = 0 for every x ∈ E.

Lemma 1.6 ([15]). Let T ∈ L(E), then T = 0 if and only if ϱ⟨x, Tx⟩ = 0 for
every x ∈ E and ϱ ∈ S(A).

For T ∈ L(E), then T is self-adjoint if and only ϱ⟨x, Tx⟩ is positive for every
x ∈ E and ϱ ∈ S(A).

Lemma 1.7 ([9]). For a, b ≥ 0 and 0 ≤ α ≤ 1,

aαb1−α ≤ αa+ (1− α)b ≤ (αar + (1− α)br)
1
r for r ≥ 1.

Lemma 1.8 ([15]). Let T ∈ L(E), T ≥ 0 and x ∈ E, then for every ϱ ∈ S(A)

(i) (ϱ⟨x, Tx⟩)r ≤ ∥x∥2(1−r)ϱ⟨x, T rx⟩ for r ≥ 1,



1062 N. BOUNADER AND M. HASSAOUY

(ii) (ϱ⟨x, Tx⟩)r ≥ ∥x∥2(1−r)ϱ⟨x, T rx⟩ for 0 < r ≤ 1.

Lemma 1.9 ([15, page.12]). Let a, b, e ∈ E with ⟨e, e⟩ = 1, then

|⟨a, e⟩⟨e, b⟩| ≤ 1

2
(⟨a, a⟩ 1

2 ⟨b, b⟩ 1
2 + |⟨a, b⟩|).

Lemma 1.10 ([15, page.7]). Let T ∈ L(E), then

wA(T
2) ≤ w2

A(T ).

Lemma 1.11 ([9, Cauchy-Schwarz inequality]). Let T ∈ B(H) and 0 ≤ α ≤ 1,
then

|⟨x, Ty⟩|2 ≤ ⟨x, |T |2αx⟩⟨y, |T ∗|2(1−α)y⟩,
for all x, y ∈ H.

The following result is a consequence of Lemma 1.11.

Corollary 1.12. Let x ∈ E and ϱ ∈ S(A), ϱ⟨·, ·⟩ is a semi-inner product.
Suppose that T ∈ L(E) and 0 ≤ α ≤ 1, then

|ϱ⟨x, Ty⟩|2 ≤ ϱ⟨x, |T |2αx⟩ϱ⟨y, |T ∗|2(1−α)y⟩,

for all x, y ∈ E.

In this section, we provide new definitions of the Rhombic numerical ra-
dius for bounded adjointable operators on Hilbert C∗-modules, which are of
course the natural generalizations of these concepts to operators on Hilbert
spaces. By using these definitions and applying special techniques, we prove
some fundamental inequalities in the Rhombic numerical radius of two bounded
adjointable operators on Hilbert C∗-modules.

2. Main results

We start with the following definition.

Definition 2.1. Suppose that E is a Hilbert right A-module. We define the
Rhombic numerical radius of B,C ∈ L(E) by

(10)

wR(B,C)

= sup

{
|ϱ⟨x,Bx⟩|+ |ϱ⟨x,Cx⟩| : x ∈ E, ϱ ∈ S(A), ϱ⟨x, x⟩ = 1

}
.

We can also consider the following norm on L2(E) := L(E)× L(E), by

∥(B,C)∥R
:= ∥B∗B + C∗C∥ 1

2

= sup

{
ϱ⟨Bx,Bx⟩ 1

2 + ϱ⟨Cx,Cx⟩ 1
2 : x ∈ E, ϱ ∈ S(A), ϱ⟨x, x⟩ = 1

}
.

(11)
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Note that our definition is a natural extension of the definition of the Rhom-
bic numerical radius of two bounded operators on Hilbert spaces. In fact, in
this case the C∗-algebra A is the set of complex numbers and S(A) contains
only the identity function on the set of complex numbers.
Moreover, we assume that A is a C∗-algebra and E is an inner product A-
module.

Lemma 2.1. ∥(·, ·)∥R is norm on L2(E).

Proof. If B = C = 0, then obviously ∥(B,C)∥R = 0. If ∥(B,C)∥R = 0, then
for every x ∈ E and ϱ ∈ S(A) with ϱ⟨x, x⟩ = 1, we have

ϱ⟨Bx,Bx⟩ = ϱ⟨Cx,Cx⟩ = 0.

Fix x ∈ E.
(i) If ϱ⟨x, x⟩ = 0, then by Remark 1.3, we have

ϱ⟨Bx,Bx⟩ ≤ ∥B∥2ϱ⟨x, x⟩ = 0 and ϱ⟨Cx,Cx⟩ ≤ ∥C∥2ϱ⟨x, x⟩ = 0.

Hence B = C = 0.
(ii) If ϱ⟨x, x⟩ ≠ 0, then by taking y = x

ϱ⟨x,x⟩
1
2
, then ϱ⟨y, y⟩ = 1. By Definition

2.1 (11),

ϱ⟨By,By⟩ = ϱ⟨Cy,Cy⟩ = 0,

and so 1

ϱ⟨x,x⟩
1
2
ϱ⟨Bx,Bx⟩ = 1

ϱ⟨x,x⟩
1
2
ϱ⟨Cx,Cx⟩ = 0. Thus ϱ⟨Bx,Bx⟩ =

ϱ⟨Cx,Cx⟩ = 0. Since for every ϱ ∈ S(A), we have ϱ⟨Bx,Bx⟩ = ϱ⟨Cx,Cx⟩ = 0.
We conclude that ⟨Bx,Bx⟩ = ⟨Cx,Cx⟩ = 0 for each x ∈ E. So B = C = 0.

On the other hand, A is an abelian C∗-algebra. Then by [7, Theorem 3.6],
|x+ y| ≤ |x|+ |y|, for each x, y ∈ E. Thus

(12) |Bx+ Cx| ≤ |Bx|+ |Cx|, for each B,C ∈ L(E) and x ∈ E.

It follows from (12) that for every positive linear functional ϱ,

ϱ⟨Bx+ Cx,Bx+ Cx⟩ 1
2 ≤ ϱ⟨Bx,Bx⟩ 1

2 + ϱ⟨Cx,Cx⟩ 1
2 .

Hence,

ϱ⟨(B + V )x, (B + V )x⟩ 1
2 + ϱ⟨(C + T )x, (C + T )x⟩ 1

2

≤ ϱ⟨Bx,Bx⟩ 1
2 + ϱ⟨V x, V x⟩ 1

2 + ϱ⟨Cx,Cx⟩ 1
2 + ϱ⟨Tx, Tx⟩ 1

2 .

Taking the supremum over all x ∈ E and ϱ ∈ S(A) with ϱ⟨x, x⟩ = 1, we have

∥(B + V,C + T )∥R ≤ ∥(B,C)∥R + ∥(V, T )∥R.

Clearly ∥λ(B,C)∥R = |λ|∥(B,C)∥R, for λ ∈ C. □

Lemma 2.2. Let B,C ∈ L(E), then

∥(B,C)∥R

= sup

{
|ϱ⟨x,By⟩|+ |ϱ⟨x,Cy⟩| : x, y ∈ E, ϱ ∈ S(A), ϱ⟨x, x⟩ = ϱ⟨y, y⟩ = 1

}
.
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Proof. Let

M = sup

{
|ϱ⟨x,By⟩|+ |ϱ⟨x,Cy⟩| : x, y ∈ E, ϱ ∈ S(A), ϱ⟨x, x⟩ = ϱ⟨y, y⟩ = 1

}
.

If ϱ ∈ S(A) and x, y ∈ E with ϱ⟨x, x⟩ = ϱ⟨y, y⟩ = 1, then by using the Cauchy-
Schwartz inequality, we get

|ϱ⟨x,By⟩|+ |ϱ⟨x,Cy⟩| ≤ ϱ⟨x, x⟩ 1
2 ϱ⟨By,By⟩ 1

2 + ϱ⟨y, y⟩ 1
2 ϱ⟨Cy,Cy⟩ 1

2

= ϱ⟨By,By⟩ 1
2 + ϱ⟨Cy,Cy⟩ 1

2

≤ ∥(B,C)∥R.

By taking supremum over x, y ∈ E and ϱ ∈ S(A) with ϱ⟨x, x⟩ = ϱ⟨y, y⟩ = 1,
we have M ≤ ∥(B,C)∥R.

For every y ∈ E and ϱ ∈ S(A) with ϱ⟨y, y⟩ = 1, we have

ϱ⟨Ty, Ty⟩ = ϱ⟨Ty, Ty⟩ 1
2 ϱ⟨ Ty

ϱ⟨Ty, Ty⟩ 1
2

, T y⟩,

where we assume that ϱ⟨Ty, Ty⟩ ≠ 0 and T ∈ L(E).
Thus

ϱ⟨By,By⟩ 1
2 + ϱ⟨Cy,Cy⟩ 1

2

= ϱ⟨ By

ϱ⟨By,By⟩ 1
2

, By⟩+ ϱ⟨ Cy

ϱ⟨Cy,Cy⟩ 1
2

, Cy⟩

≤ sup

{
|ϱ⟨x,By⟩|+ |ϱ⟨x,Cy⟩| : x, y ∈ E, ϱ ∈ S(A), ϱ⟨x, x⟩ = ϱ⟨y, y⟩ = 1

}
= M.

Taking the supremum over all y ∈ E and ϱ ∈ S(A) with ϱ⟨y, y⟩ = 1, we have
∥(B,C)∥R ≤ M . □

Lemma 2.3. Let B,C ∈ L(E), then |ϱ⟨x,Bx⟩|+ |ϱ⟨x,Cx⟩| ≤ wR(B,C)ϱ⟨x, x⟩
for every ϱ ∈ S(A) and x ∈ E.

Proof. Let x ∈ E and ϱ⟨x, x⟩ ≠ 0. Then

ϱ⟨ x

ϱ⟨x, x⟩ 1
2

,
x

ϱ⟨x, x⟩ 1
2

⟩ = 1,

so that∣∣∣∣ϱ⟨ x

ϱ⟨x, x⟩ 1
2

, B

(
x

ϱ⟨x, x⟩ 1
2

)
⟩
∣∣∣∣+ ∣∣∣∣ϱ⟨ x

ϱ⟨x, x⟩ 1
2

, C

(
x

ϱ⟨x, x⟩ 1
2

)
⟩
∣∣∣∣ ≤ wR(B,C).

Hence,

|ϱ⟨x,Bx⟩|+ |ϱ⟨x,Cx⟩ |≤ wR(B,C)ϱ⟨x, x⟩.
Let ϱ⟨x, x⟩ = 0. By the Cauchy-Schwarz inequality, then

|ϱ⟨x,Bx⟩| ≤ ϱ⟨Bx,Bx⟩ 1
2 ϱ⟨x, x⟩ 1

2 ,
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and
|ϱ⟨x,Cx⟩| ≤ ϱ⟨Cx,Cx⟩ 1

2 ϱ⟨x, x⟩ 1
2 .

It follows that |ϱ⟨x,Bx⟩| = |ϱ⟨x,Cx⟩| = 0. Therefore

|ϱ⟨x,Bx⟩ | + | ϱ⟨x,Cx⟩ |≤ wR(B,C)ϱ⟨x, x⟩. □

Theorem 2.4. The Euclidean operator radius wR(·, ·) : L(E)×L(E) → [0,∞)
for two operators satisfies the following properties:

(1) wR(B,C) = 0 if and only if B = C = 0,
(2) wR(λB, λC) = |λ|wR(B,C) for any λ ∈ C,
(3) wR(B + V,C + T ) ≤ wR(B,C) + wR(V, T ),
(4) wR(U∗BU,U∗CU) = wR(B,C) for any unitary operator U : E −→ E,
(5) wR(T ∗BT, T ∗CT ) ≤ ∥T∥2wR(B,C) for any operator T : E −→ E,
(6) wR(B,B) = 2wA(B),
(7) If B ∈ L(E) and B = C + iD is the Cartesian decomposition of B,

then wA(B) ≤ wR(C,D).

Proof. (1) Let wR(B,C) = 0. Then for every x ∈ E and ϱ ∈ S(A) with
ϱ⟨x, x⟩ = 1, we have

|ϱ⟨x,Bx⟩|+ |ϱ⟨x,Cx⟩| = 0.

Hence ϱ⟨x,Bx⟩ = ϱ⟨x,Cx⟩ = 0 for every x ∈ E and ϱ ∈ S(A) with ϱ⟨x, x⟩ = 1.
By Lemma 1.5, ϱ⟨x,Bx⟩ = ϱ⟨x,Cx⟩ = 0 for every x ∈ E and ϱ ∈ S(A), and
by Lemma 1.6, B = C = 0.

(2) For every λ ∈ C,
wR(λB, λC) = sup

ϱ⟨x,x⟩=1

(|ϱ⟨x, λBx⟩|+ |ϱ⟨x, λCx⟩|)

= |λ| sup
ϱ⟨x,x⟩=1

(
| ϱ⟨x,Bx⟩|+ |ϱ⟨x,Cx⟩|

)
= |λ|wR(B,C).

(3) Let B,C, V, T ∈ L(E). For every x ∈ E and ϱ ∈ S(A) with ϱ⟨x, x⟩ = 1,

|ϱ⟨x, (B + V )x⟩|+ |ϱ⟨x, (C + T )x⟩|
= |ϱ⟨x,Bx⟩+ ϱ⟨x, V x⟩|+ |ϱ⟨x,Cx⟩+ ϱ⟨x, Tx⟩|
≤ |ϱ⟨x,Bx⟩|+ |ϱ⟨x, V x⟩|+ |ϱ⟨x,Cx⟩|+ |ϱ⟨x, Tx⟩|
= (|ϱ⟨x,Bx⟩|+ |ϱ⟨x,Cx⟩|) + (|ϱ⟨x, V x⟩|+ |ϱ⟨x, Tx⟩|).

By taking supremum over all ϱ⟨x, x⟩ = 1, we have

wR(B + V,C + T ) ≤ wR(B,C) + wR(V, T ). □

Theorem 2.5. For every B,C ∈ L(E), we have

(13)
1

2
∥(B,C)∥R ≤ wR(B,C) ≤ ∥(B,C)∥R.

Here the constants 1
2 and 1 are best possible.



1066 N. BOUNADER AND M. HASSAOUY

Proof. For every x ∈ E and ϱ ∈ S(A) with ϱ⟨x, x⟩ = 1, by Lemma 2.2, we have

|ϱ⟨x,Bx⟩|+ |ϱ⟨x,Cx⟩| ≤ ∥(B,C)∥R.

By taking supremum over all ϱ⟨x, x⟩ = 1, we have

wR(B,C) ≤ ∥(B,C)∥R.

For every ϱ ∈ S(A) and x, y ∈ E, with ϱ⟨x, x⟩ ≤ 1 and ϱ⟨y, y⟩ ≤ 1, we have

4|ϱ⟨x, Ty⟩|
= |ϱ⟨x+ y, T (x+ y)⟩ − ϱ⟨x− y, T (x− y)⟩

+ iϱ⟨x+ iy, T (x+ iy)⟩ − iϱ⟨x− iy, T (x− iy)⟩|
≤ |ϱ⟨x+ y, T (x+ y)⟩|+ |ϱ⟨x− y, T (x− y)⟩|

+ |ϱ⟨x+ iy, T (x+ iy)⟩|+ |ϱ⟨x− iy, T (x− iy)⟩|.
Thus,

4(|ϱ⟨x,By⟩|+ |ϱ⟨x,Cy⟩|) ≤ wR(B,C)(ϱ⟨x+ y, x+ y⟩+ ϱ⟨x− y, x− y⟩
+ ϱ⟨x+ iy, x+ iy⟩+ ϱ⟨x− iy, x− iy⟩)

≤ 4wR(B,C)(ϱ⟨x, x⟩+ ϱ⟨y, y⟩)
≤ 8wR(B,C).

By taking supremum over all ϱ⟨x, x⟩ = ϱ⟨y, y⟩ = 1, we have

∥(B,C)∥R ≤ 2wR(B,C).

Consequently, we obtain the second inequality. □

3. Some applications

In this section, we show that the results of the previous section enable us to
generalize some results about the Rhombic numerical radius of two operators
on Hilbert spaces to the Rhombic numerical radius of two adjointable operators
on Hilbert C∗-modules.

To prove our first theorem we need the following lemma.

Lemma 3.1 ([10]). Let T ∈ B(H), and f and g be non-negative continuous
functions on [0,∞) satisfying f(t)g(t) = t for all t ∈ [0,∞). Then

|ϱ⟨x, Ty⟩| ≤ ∥f(|T |)x∥∥g(|T ∗|)y∥,
for all x, y ∈ H.

The following result is a consequence of Lemma 3.1.

Corollary 3.2. Let ϱ ∈ S(A), ϱ⟨·, ·⟩ is a semi-inner product. Suppose that T ∈
L(E), and f and g be non-negative continuous functions on [0,∞) satisfying
f(t)g(t) = t for all t ∈ [0,∞). Then

|ϱ⟨x, Ty⟩| ≤ ϱ⟨f(|T |)x, f(|T |)x⟩ 1
2 ϱ⟨g(|T ∗|)y, g(|T ∗|)y⟩ 1

2 ,

for all x, y ∈ E.
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The above results enable us to state the following.

Theorem 3.3. Let A,B,C,D, T, S ∈ L(E) and let f and g be non-negative
continuous functions on [0,∞) satisfying f(t)g(t) = t for all t ∈ [0,∞). Then
(14)
wr

R(A∗TB,C∗SD)

≤ 2r−2

∥∥∥∥(A∗f2(|T |)A)r + (B∗g2(|T ∗|)B)r + (C∗f2(|S|)C)r + (D∗g2(|S∗|)D)r
∥∥∥∥,

for r ≥ 1.

Proof. For any x ∈ E and ϱ ∈ S(A) with ϱ⟨x, x⟩ = 1, we have

|ϱ⟨x,A∗TBx⟩|
= |ϱ⟨Ax, TBx⟩|

≤ ϱ⟨f(|T |)Ax, f(|T |)Ax⟩ 1
2 ϱ⟨g(|T ∗|)Bx, g(|T ∗|)Bx⟩ 1

2 (by Corollary 3.2)

= ϱ⟨x,A∗f2(|T |)Ax⟩ 1
2 ϱ⟨x,B∗g2(|T ∗|)Bx⟩ 1

2

≤
(
1

2
(ϱ⟨x,A∗f2(|T |)Ax⟩r + ⟨x,B∗g2(|T ∗|)Bx⟩r)

) 1
r

(by Lemma 1.7)

≤
(
1

2
(ϱ⟨x, (A∗f2(|T |)A)rx⟩+ ⟨x, (B∗g2(|T ∗|)B)rx⟩)

) 1
r

(by Lemma 1.8)

=

(
1

2
ϱ⟨x, ((A∗f2(|T |)A)r + (B∗g2(|T ∗|)B)r)x⟩

) 1
r

.

Thus,

|ϱ⟨x,A∗TBx⟩|r ≤ 1

2
ϱ⟨x, ((A∗f2(|T |)A)r + (B∗g2(|T ∗|)B)r)x⟩,

by convexity of the function f(t) = tr on [0,∞), we have

(|ϱ⟨x,A∗TBx⟩|+ |ϱ⟨x,C∗SDx⟩|)r

≤ 2r−1(|ϱ⟨x,A∗TBx⟩|r + |ϱ⟨x,C∗SDx⟩|r)
≤ 2r−2ϱ⟨x, ((A∗f2(|T |)A)r + (B∗g2(|T ∗|)B)r + (C∗f2(|S|)C)r + (D∗g2(|S∗|)D)r)x⟩

≤ 2r−2∥(A∗f2(|T |)A)r + (B∗g2(|T ∗|)B)r + (C∗f2(|S|)C)r + (D∗g2(|S∗|)D)r∥.

By taking supremum over all x ∈ E and ϱ ∈ S(A) with ϱ⟨x, x⟩ = 1,

wr
R(A∗TB,C∗SD)

≤ 2r−2∥(A∗f2(|T |)A)r + (B∗g2(|T ∗|)B)r + (C∗f2(|S|)C)r + (D∗g2(|S∗|)D)r∥.

□

Letting f(t) = g(t) = t
1
2 , we get the following.
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Corollary 3.4. Let A,B,C,D, T, S ∈ L(E). Then

(15)

wr
R(A∗TB,C∗SD)

≤ 2r−2

∥∥∥∥(A∗|T |A)r + (B∗|T ∗|B)r + (C∗|S|C)r + (D∗|S∗|D)r
∥∥∥∥,

for r ≥ 1.

Choosing A = C, B = D and T = S = I, we get the following.

Corollary 3.5. Let A,B ∈ L(E). Then

(16) wr
R(A∗B,A∗B) ≤ 2r−1

∥∥∥∥(A∗A)r + (B∗B)r
∥∥∥∥,

for r ≥ 1.

In particular, if we choose wr
R(A∗B,A∗B) = 2rwr

A(A
∗B), we have

(17) wr
A(A

∗B) ≤ 1

2

∥∥∥∥(A∗A)r + (B∗B)r
∥∥∥∥,

for r ≥ 1.
We remark that, in [6] Dragomir, has proved the inequality (17) in a Hilbert

space.
Choosing A = B = C = D = I, we get the following.

Corollary 3.6. Let T, S ∈ L(E). Then

(18) wr
R(T, S) ≤ 2r−2

∥∥∥∥|T |r + |T ∗|r + |S|r + |S∗|r
∥∥∥∥,

for r ≥ 1.

Corollary 3.7. If T ∈ L(E), then

(19) wr
A(T ) ≤

1

2

∥∥∥∥|T |r + |T ∗|r
∥∥∥∥,

for r ≥ 1.

Proof. If in Corollary 3.6, we choose T = S, then by Theorem 2.4 (6) we get
wr

R(T, T ) = 2rwr
A(T ), which implies the desired result. □

In particular, if we choose r = 2, we have

(20) w2
A(T ) ≤

1

2
∥T ∗T + TT ∗∥.

We remark that, in [15], the authors proved the inequality (20).
In this theorem, we generalize the norm inequalities and a related Rhombic

numerical radius inequality of two bounded adjointable operators on Hilbert
C∗-modules.
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Theorem 3.8. Let T, S ∈ L(E), 0 < α < 1 and r ≥ 1. Then

(21) ∥(T, S)∥rR ≤ 2r−2

∥∥∥∥|T |2αr + |S|2αr
∥∥∥∥+ ∥∥∥∥|T ∗|2(1−α)r + |S∗|2(1−α)r

∥∥∥∥.
Proof. Let x, y ∈ E and ϱ ∈ S(A) with ϱ⟨x, x⟩ = ϱ⟨y, y⟩ = 1, we have

|ϱ⟨x, Ty⟩|+ |ϱ⟨x, Sy⟩|

≤ ϱ⟨x, |T |2αx⟩ 1
2 ϱ⟨y, |T ∗|2(1−α)y⟩ 1

2 + ϱ⟨x, |S|2αx⟩ 1
2 ϱ⟨y, |S∗|2(1−α)y⟩ 1

2

(by Corollary 1.12)

≤
(

ϱ⟨x,|T |2αx⟩r+ϱ⟨y,|T∗|2(1−α)y⟩r
2

) 1
r

+

(
ϱ⟨x,|S|2αx⟩r+ϱ⟨y,|S∗|2(1−α)y⟩r

2

) 1
r

(by Lemma 1.7)

≤
(

ϱ⟨x,|T |2αrx⟩+ϱ⟨y,|T∗|2(1−α)ry⟩
2

) 1
r

+

(
ϱ⟨x,|S|2αrx⟩+ϱ⟨y,|S∗|2(1−α)ry⟩

2

) 1
r

(by Lemma 1.8)

≤ 21−
1
r

(
ϱ⟨x,|T |2αrx⟩+ϱ⟨y,|T∗|2(1−α)ry⟩+ϱ⟨x,|S|2αrx⟩+ϱ⟨y,|S∗|2(1−α)ry⟩

2

) 1
r

(by the concavity of the function f(t) = t
1
r on [0,∞)).

Thus,

(|ϱ⟨x, Ty⟩|+ |ϱ⟨x, Sy⟩|)r

≤ 2r−2(ϱ⟨x, (|T |2αr + |S|2αr)x⟩+ ϱ⟨y, (|T ∗|2(1−α)r + |S∗|2(1−α)r)y⟩)

≤ 2r−2∥|T |2αr + |S|2αr∥+ ∥|T ∗|2(1−α)r + |S∗|2(1−α)r∥.

Now taking the supremum over all x, y ∈ E with ϱ⟨x, x⟩ = ϱ⟨y, y⟩ = 1, we
obtain

∥(T, S)∥rR ≤ 2r−2∥|T |2αr + |S|2αr∥+ ∥|T ∗|2(1−α)r + |S∗|2(1−α)r∥. □

Letting x = y in the proof of Theorem 3.8, it can be easily shown that

(22) wr
R(T, S) ≤ 2r−2∥|T |2αr + |S|2αr + |T ∗|2(1−α)r + |S∗|2(1−α)r∥.

In particular, if T = S, then the inequality (22) reduces to the inequality
following:

(23) wr
A(T ) ≤

1

2
∥|T |2αr + |T ∗|2(1−α)r∥.

We remark that in [7] El-Haddad and Kittaneh have proved the inequality (23)
in a Hilbert space.
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Theorem 3.9. Let T, S ∈ L(E). Then

(24) w2
R(T, S) ≤ w2

e(T, S) +
1

2
∥TT ∗ + S∗S∥+ wA(TS).

Proof. Let x ∈ E and ϱ ∈ S(A) with ϱ⟨x, x⟩ = 1, then(
|ϱ⟨x, Tx⟩|+ |ϱ⟨x, Sx⟩|

)2

= |ϱ⟨x, Tx⟩|2 + |ϱ⟨x, Sx⟩|2 + 2|ϱ⟨x, Tx⟩||ϱ⟨x, Sx⟩|
≤ w2

e(T, S) + 2|ϱ⟨T ∗x, x⟩ϱ⟨x, Sx⟩|

≤ w2
e(T, S) + ϱ⟨t∗x, t∗x⟩ 1

2 ϱ⟨sx, sx⟩ 1
2 + |ϱ⟨t∗x, sx⟩| (by Lemma 1.9)

≤ w2
e(T, S) +

1

2
ϱ⟨T ∗x, T ∗x⟩+ 1

2
ϱ⟨Sx, Sx⟩+ |ϱ⟨T ∗x, Sx⟩| (by Lemma 1.7)

≤ w2
e(T, S) +

1

2
ϱ⟨x, (TT ∗ + S∗S)x⟩+ |ϱ⟨x, TSx⟩|

≤ w2
e(T, S) +

1

2
∥TT ∗ + S∗S∥+ wA(TS).

By taking supremum over all x ∈ E and ϱ ∈ S(A) with ϱ⟨x, x⟩ = 1, we obtain

(25) w2
R(T, S) ≤ w2

e(T, S) +
1

2
∥TT ∗ + S∗S∥+ wA(TS). □

Remark 3.10. (i) If we take T = S in (25), then we get the following upper
bound:

(26) w2
A(T ) ≤

1

4
∥T ∗T + TT ∗∥+ 1

2
wA(T

2).

We remark that, in [1], the authors proved the inequality (26) in a Hilbert
spaces.

(ii) Using the power inequality in (Lemma 1.10) and the inequality (26), we
have

(27) w2
A(t) ≤ 2w2

A(t)− wA(t
2) ≤ 1

2
∥T ∗T + TT ∗∥,

which shows that the inequality (26) is sharper than the inequality (4).

Theorem 3.11. Let T, S ∈ L(E), then

(28) wA(T
2+S2)+max(wA(T ), wA(S))|wA(t+s)−wA(T −S) |≤ w2

R(T, S).

Proof. For every x ∈ E and ϱ ∈ S(A) with ϱ⟨x, x⟩ = 1, we have

(|ϱ⟨x, Tx⟩|+ |ϱ⟨x, Sx⟩|)2 ≥ |ϱ⟨x, Tx⟩ ± ϱ⟨x, Sx⟩|2 = |ϱ⟨x, (T ± S)x⟩|2.
Taking the supremum over all x ∈ E and ϱ⟨x, x⟩ = 1, we deduce

(29) w2
R(T, S) ≥ w2

A(T ± S).

Therefore, it follows from the inequalities in (29) that

w2
R(T, S) ≥ max{w2

A(T + S), w2
A(T − S)}
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=
w2

A(T + S) + w2
A(T − S)

2
+

|w2
A(T + S)− w2

A(T − S) |
2

≥ wA((T + S)2) + wA((T − S)2)

2
+ wA(T + S)

+ wA(T − S)
|wA(T + S)− wA(T − S)|

2
(by Lemma 1.10)

≥ wA((T + S)2 + (T − S)2)

2

+ wA((T + S) + (T − S))
|wA(T + S)− wA(T − S)|

2
.

Therefore,

(30) w2
R(T, S) ≥ wA(T

2 + S2) + wA(T )|wA(T + S)− wA(T − S)|.
Interchanging T and S in (30), we have that

(31) w2
R(T, S) ≥ wA(T

2 + S2) + wA(S)|wA(T + S)− wA(T − S) | .
Therefore, the desired inequality follows by combining the inequalities in (30)
and (31). □

Remark 3.12. (i) Clearly, the lower bound of wR(T, S) obtained in Theorem
3.11 is stronger than the lower bound in (6).

(ii) Following Theorem 3.11, w2
R(T, S) = wA(T

2+S2) implies wA(T +S) =
wA(T −S). By considering S = 0, we conclude that the converse part does not
always hold.

The following corollary is an immediate consequence of Theorem 3.11 as-
suming T and S to be self-adjoint operators.

Corollary 3.13. Let T, S ∈ L(E), then

(32) ∥T 2 + S2∥+max(∥T∥, ∥S∥)
∣∣∣∣∥T + S∥ − ∥T − S∥

∣∣∣∣ ≤ w2
R(T, S).

In [2, Th. 2.4], it is proved that if B,C are bounded linear operators on H,
then

(33) w(C +D) ≤ wR(C,D) ≤ 2w(C +D).

In the next result, we improve the above upper Rhombic numerical radius for
two adjointable operators in Hilbert C∗-module spaces.

Theorem 3.14. Let T, S ∈ L(E), then

(34) w2
R(T, S) ≤ min

(∥∥∥∥|T |+ |S|
∥∥∥∥∥∥∥∥|T ∗|+ |S∗|

∥∥∥∥,∥∥∥∥|T |+ |S∗|
∥∥∥∥∥∥∥∥|T ∗|+ |S|

∥∥∥∥).
Proof. Let x ∈ E and ϱ ∈ S(A) with ϱ⟨x, x⟩ = 1.

|ϱ⟨x, Tx⟩|+ |ϱ⟨x, Sx⟩|

≤ ϱ⟨x, |T |x⟩ 1
2 ϱ⟨x, |T ∗|x⟩ 1

2 + ϱ⟨x, |S|x⟩ 1
2 ϱ⟨x, |S∗|x⟩ 1

2 (by Corollary 1.12)
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≤ (ϱ⟨x, |T |x⟩+ ϱ⟨x, |S|x⟩) 1
2 (ϱ⟨x, |T ∗|x⟩+ ϱ⟨x, |s∗|x⟩) 1

2

(by the inequality (ab+ cd)2 ≤ (a2 + c2)(b2 + d2) for a, b, c, d ∈ R)

= (ϱ⟨x, (|T |+ |S|)x⟩) 1
2 (ϱ⟨x, (|T ∗|+ |s∗|x⟩) 1

2

≤
∥∥∥∥|T |+ |S|

∥∥∥∥ 1
2
∥∥∥∥|T ∗|+ |S∗|

∥∥∥∥∥
1
2

.

Taking supremum over all x ∈ E and with ϱ⟨x, x⟩ = 1, we get

(35) w2
R(T, S) ≤

∥∥∥∥|T |+ |S|
∥∥∥∥∥∥∥∥|T ∗|+ |S∗|

∥∥∥∥.
Replacing S by S∗ in (35), we have

(36) w2
R(T, S) ≤

∥∥∥∥|T |+ |S∗|
∥∥∥∥∥∥∥∥|T ∗|+ |S|

∥∥∥∥.
Therefore, combining the inequalities in (35) and (36) we obtain the desired
inequality. □

Remark 3.15. (i) Clearly the inequality (34) is a refinement of the inequality
(33) obtained in [2, Th. 2.4]. To see that the refinement is proper, consider

T =

(
1 0
0 0

)
and S =

(
0 0
0 2

)
. Then we get∥∥∥∥|T |+ |S|

∥∥∥∥ 1
2
∥∥∥∥|T ∗|+ |S∗|

∥∥∥∥ 1
2

= 2.23606797749979

≤ 3.99999797923587

= 2w(T + S).

(ii) For self-adjoint operators T, S ∈ L(E), the bound in Theorem 3.14 is of
the form

(37) wR(T, S) ≤ ∥|T |+ |S|∥.

El-Haddad and Kittaneh in [7] proved the following statement.

Theorem 3.16 ([7, Th. 4]). Let A ∈ B(H) with the Cartesian decomposition
A = B + iC, and let r ≥ 2. Then

wr(A) ≤ 2
r
2−1∥|B|r + |C|r∥.

The next result shows that Theorem 3.16 is true for operators on Hilbert
C∗-modules.

Theorem 3.17. Let Tj ∈ L(E) have the Cartesian decomposition Tj = Bj +
iCj for j = 1, . . . , n and r ≥ 1, then

wr
A

( n∑
j=1

Tj

)
≤ nr−1

n∑
j=1

w
r
2

R(|Bj |2, |Cj |2).
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Proof. According to Boher’s inequality (see [9]) for every finite positive num-
bers a1, . . . , an and r ≥ 1,

(38)

( n∑
i=1

ai

)r

≤ nr−1
n∑

i=1

ari .

For every 1 ≤ j ≤ n, ϱ ∈ S(A) and x ∈ E with ϱ⟨x, x⟩ = 1, we have

|ϱ⟨x, Tjx⟩|2 ≤ ϱ⟨x, |Tj |x⟩ϱ⟨x, |T ∗
j |x⟩ (by Corollary 1.12)

≤
ϱ⟨x, |Tj |x⟩2 + ϱ⟨x, |T ∗

j |x⟩2

2

≤
ϱ⟨x, |Tj |2x⟩+ ϱ⟨x, |T ∗

j |2x⟩
2

(by Lemma 1.8)

=
ϱ⟨x, (|Tj |2 + |T ∗

j |2x)⟩
2

.

It follows that for every x ∈ E and ϱ ∈ S(A) with ϱ⟨x, x⟩ = 1, we have∣∣∣∣ϱ⟨x, n∑
j=1

Tjx⟩
∣∣∣∣r ≤

( n∑
j=1

(
1

2
ϱ⟨x, (T ∗

j Tj + TjT
∗
j )x⟩

) 1
2
)r

≤
( n∑

j=1

ϱ⟨x, (|Bj |2 + |Cj |2)x⟩
1
2

)r

≤ nr−1
n∑

j=1

(
ϱ⟨x, |Bj |2x⟩+ ϱ⟨x, |Cj |2x⟩

) r
2

.

Therefore,

wr
A

( n∑
j=1

Tj

)
= sup

{∣∣∣∣ϱ⟨x, n∑
j=1

Tjx⟩
∣∣∣∣r : x ∈ E, ϱ ∈ S(A), ϱ⟨x, x⟩ = 1

}

≤ nr−1
n∑

j=1

w
r
2

R(|Bj |2, |Cj |2).
□

Corollary 3.18. Let Tj ∈ L(E) have the Cartesian decomposition Tj = Bj +
iCj, for j = 1, . . . , n, 0 < α < 1 and r ≥ 1. Then

(39)

wr
A(

n∑
j=1

Tj)

≤ nr−12
r
2−1

n∑
j=1

∥∥∥∥|Bj |4αr + |Cj |4αr + |Bj |4(1−α)r + |Cj |4(1−α)r

∥∥∥∥ 1
2

.

Proof. If we apply the inequality (22) for the Cartesian decomposition of Tj ,
we reach the desired result. □

In particular for n = 1 and α = 1
2 , we have the following result.
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Corollary 3.19. Let T = B+ iC be the Cartesian decomposition T and r ≥ 1.
Then

wr
A(T ) ≤ 2

r−1
2

∥∥∥∥|B|2r + |C|2r
∥∥∥∥ 1

2

.
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