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BOUNDS AND INEQUALITIES OF THE MODIFIED

LOMMEL FUNCTIONS

Saiful R. Mondal

Abstract. This article studies the monotonicity, log-convexity of the

modified Lommel functions by using its power series and infinite product
representation. Some properties for the ratio of the modified Lommel

functions with the Lommel function, sinh and cosh are also discussed. As
a consequence, Turán type and reverse Turán type inequalities are given.

A Rayleigh type function for the Lommel functions are derived and as an

application, we obtain the Redheffer-type inequality.

1. Introduction

The Lommel functions [8,9] are the particular solution of the inhomogeneous
Bessel differential equations

x2f′′µ,ν(x) + xf′µ,ν(x)− (ν2 − x2)fµ,ν(x) = xµ+1,(1.1)

which are usually denoted as sµ,ν and Sµ,ν [2, 12] and Sµ,ν [13] given by

fµ,ν(x) :=


Sµ,ν(x)= xµ+1

(µ+1)2−ν2 1F2

(
1; µ−ν+3

2 , µ+ν+3
2 ;−x

2

4

)
,

Sµ,ν(x)= Sµ,ν(x)+ (2i)µ−1

iν Γ(µ−ν+1
2 )Γ(µ+ν+1

2 )Jν(x),

Sµ,ν(x)= Sµ,ν(x)+i2µ−1 cos
(
π(µ−ν)

2

)
Γ(µ−ν+1

2 )Γ(µ+ν+1
2 )H

(1)
ν (x),

(1.2)

where Jν and H
(1)
ν are respectively the Bessel and the Hankel function of the

first kind. The above functions satisfy the recurrence relation

fµ+2,ν(x) = xµ+1 −
(
(µ+ 1)2 − ν2

)
fµ,ν(x).(1.3)

The application of the Lommel functions can be seen in various branches of
mathematics and mathematical physics. The mathematical properties of the
Lommel functions are available in the literature [5,7,10,13–17]. Like the mod-
ified Bessel functions, the analogous of the Lommel functions is the modified
Lommel functions. This functions first appear in the theory of screw propeller
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2 S. R. MONDAL

[11] and later analysed in [6, 13, 18]. The modified Lommel function gµ,ν is a
particular solution of the differential equation

x2y′′(x) + xy′(x)− (x2 + ν2)y(x) = xµ+1,(1.4)

and satisfies the relation gµ,ν(x) = i−(µ+1)fµ,ν(ix). Clearly, gµ,ν satisfies the
recurrence relation

gµ+2,ν(x) =
(
(µ+ 1)2 − ν2

)
gµ,ν(x)− xµ+1.(1.5)

For k ∈ {0, 1, 2, . . .}, consider the function

ϕk(x) := 1F2

(
1; µ−k+2

2 , µ−k+3
2 ;−x

2

4

)
,(1.6)

where x ∈ R and µ ∈ R such that µ − k is not in {0,−1,−2, . . .}. In [3], it
is shown that ϕk is an even real entire function of order one and poses the
Hadamard factorization

ϕk(x) =

∞∏
j=1

(
1− x2

η2
µ,k,n

)
,(1.7)

where ±ηµ,k,n are all zeroes of ϕk. The infinite product in (1.7) is absolutely
convergent. The function ϕk have close association with the Lommel function
Sµ,ν by the relation

Sµ−k−1/2,1/2(x) =
xµ−k+1/2

(µ− k)(µ− k + 1)
ϕk(x).(1.8)

For µ ∈ (0, 1), it is shown in [5] that Sµ−1/2,1/2 has only one zero in each of the
interval

I2n−1(µ)=
((

2n−1+
µ

2

)
π, (2n−1+µ)π

)
and I2n(µ)=

(
2nπ,

(
2n+

µ

2

)
π
)
.

In this article we consider the function Lµ,ν as

Lµ,ν(x) := i−(µ+1)Sµ,ν(ix)(1.9)

=
xµ+1

(µ− ν + 1)(µ+ ν + 1)
1F2

(
1;
µ− ν + 3

2
;
µ+ ν + 3

2
;
x2

4

)
.

The function Lµ,ν is known as the modified Lommel function. We also consider
the normalized modified Lommel functions as

λµ,ν(x) = (µ− ν + 1)(µ+ ν + 1)x−µ−1Lµ,ν(x)(1.10)

=

∞∑
n=0

x2n(
µ−ν+3

2

)
n

(
µ+ν+3

2

)
n

4n
.

More details about the modified Lommel functions can be seen in [12,18,19].
The Section 2 in this article is devoted for the investigation of the monotonic-

ity properties of λµ,ν . Log-concavity and log-convexity properties in terms of
the parameters µ and variable x are also investigated. As a consequence, direct
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BOUNDS AND INEQUALITIES OF THE MODIFIED LOMMEL FUNCTIONS 3

and reverse Turán-type inequalities are obtained. The ratio of the derivatives
of λµ,ν with sinh and cosh also considered in this section.

In Section 3, the special case for the Lommel and the modified Lommel func-
tions related to ϕk are considered. This section investigate the monotonicity
and log-convexity for the product and the ratio of the Lommel and the mod-
ified Lommel functions. At the end a Redheffer-type inequality for both the
Lommel and the modified Lommel functions is derived.

Following lemma is required in sequel.

Lemma 1.1 ([4]). Suppose f(x) =
∑∞
k=0 akx

k and g(x) =
∑∞
k=0 bkx

k, where
ak ∈ R and bk > 0 for all k. Further suppose that both series converge on
|x| < r. If the sequence {ak/bk}k≥0 is increasing (or decreasing), then the
function x 7→ f(x)/g(x) is also increasing (or decreasing) on (0, r).

Notably, the above lemma also holds true when both f and g are even, or
both are odd functions.

2. Monotonicity pattern

Theorem 2.1. Suppose that µ, µ1 > −1 and ν, ν1 ∈ R such that µ ± ν and
µ1 ± ν1 are not negative odd integer. Then the following assertion are true.

(i) Suppose that µ1 ≥ µ > −1 and (µ1 − µ)(µ1 + µ+ 6) ≥ ν2
1 − ν2. Then,

the function x 7→ λµ,ν(x)/λµ1,ν1(x) is increase on (0,∞).
(ii) If µ ± ν + 3 > 0, then the function µ 7→ λµ,ν(x) is decreasing and

log-convex on (−1,∞) for each fixed ν ∈ R and x > 0.
(iii) If µ± ν + 3 > 0, then the function ν 7→ λµ,ν(x) is log-convex on R for

each fixed µ > −1 and x > 0.
(iv) The function x 7→ λ2k

µ,ν(x)/ cosh(x) is strictly decreasing if (µ − ν +
3)(µ+ ν + 3) > 2.

(v) The function x 7→ λ2k+1
µ,ν (x)/ sinh(x) is strictly decreasing provided (µ−

ν + 5)(µ+ ν + 5) > 12.

Proof. First consider a sequence {wn} defined by

wn :=
(a− b)n(a+ b)n
(c− d)n(c+ d)n

,

where a, b, c, d are real numbers such that a ± b and c ± d are not negative
integers or zero.

Then a calculation yield

wn+1

wn
=

(a− b+ n)(a+ b+ n)

(c− d+ n)(c+ d+ n)
≥ 1,

provided a2 − b2 + 2an+ n2 ≥ c2 − d2 + 2cn+ n2, which is equivalent to

2(a− c)n+ a2 − b2 − c2 + d2 ≥ 0.

The last inequality holds for all n ≥ 0 if a ≥ c and a2 − b2 − c2 + d2 ≥ 0.
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4 S. R. MONDAL

Choose a = (µ1 + 3)/2, b = ν1/2, c = (µ+ 3)/2 and d = ν/2. Then, a ≥ c is
equivalent to µ1 ≥ µ and a2−b2−c2 +d2 ≥ 0 reduces to (µ1−µ)(µ1 +µ+6) >
ν2

1 − ν2. This establish the fact that under the hypothesis in (i) the sequence
{wn} is increasing. Since in this case {wn} represent the ratio of the coefficients
of λµ,ν(x) and λµ1,ν1(x), the result in (i) follows, in view of Lemma 1.1.

Two prove (ii) and (iii), consider the function

gn(µ, ν) :=
Γ
(
µ−ν+3

2

)
Γ
(
µ+ν+3

2

)
Γ
(
µ−ν+3

2 + n
)

Γ
(
µ+ν+3

2 + n
) .

The first and second partial differentiation of log(gn(µ, ν)) with respect to
µ,

∂

∂µ
log(gn(µ, ν))

=
1

2

(
Ψ
(
µ−ν+3

2

)
+ Ψ

(
µ+ν+3

2

)
−Ψ

(
µ−ν+3

2 + n
)
−Ψ

(
µ+ν+3

2 + n
))
,

∂2

∂µ2
log(gn(µ, ν))

=
1

4

(
Ψ′
(
µ−ν+3

2

)
+ Ψ′

(
µ+ν+3

2

)
−Ψ′

(
µ−ν+3

2 + n
)
−Ψ′

(
µ+ν+3

2 + n
))

=
∂2

∂ν2
log(gn(µ, ν)).

Here, Ψ(x) = Γ′(x)/Γ(x) is the digamma function which is increasing and
concave on (0,∞). Thus

∂
∂µgn(µ, ν)

gn(µ, ν)
=

∂

∂µ
log(gn(µ, ν)) < 0 and

∂2

∂µ2
log(gn(µ, ν)) =

∂2

∂ν2
log(gn(µ, ν)) ≥ 0.

This conclude that µ 7→ λµ,ν(x) is decreasing and log-convex on (−1,∞). Also,
ν 7→ λµ,ν(x) is log-convex on R for each fixed µ > −1 and x ∈ R. This prove
(ii) and (iii) in view of the fact that the sum of log-convex functions is also
log-convex.

A computation yield

λ(2k)
µ,ν (x) =

∞∑
n=0

(2n+ 2k)!(
µ−ν+3

2

)
n+k

(
µ+ν+3

2

)
n+k

4n+k(2n)!
x2n.(2.1)

It is well-known that

cosh(x) =

∞∑
n=0

x2n

(2n)!
.
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BOUNDS AND INEQUALITIES OF THE MODIFIED LOMMEL FUNCTIONS 5

In view of Lemma 1.1, it is enough to know the monotonicity of the sequence
{αn}n≥0 where

αn =
(2n+ 2k)!(

µ−ν+3
2

)
n

(
µ+ν+3

2

)
n

4n+k
.

Now, for all n ≥ 0 and k ≥ 0, the ratio

αn+1

αn
=

(2n+ 2k + 2)(2n+ 2k + 1)

4
(
µ−ν+3

2 + n+ k
) (

µ+ν+3
2 + n+ k

) < 1,

provided (µ− ν + 3)(µ+ ν + 3) > 2.
Similarly,

(2.2)

λ(2k+1)
µ,ν (x) =

∞∑
n=0

(2n+ 2k + 2)!x2n+1(
µ−ν+3

2

)
n+k+1

(
µ+ν+3

2

)
n+k+1

4n+k+1(2n+ 1)!
and

sin(x) =

∞∑
n=0

x2n

(2n)!
,

together with Lemma 1.1 yields that λ
(2k+1)
µ,ν (x)/ sin(x) is decreasing if the

sequence {βn}n≥0 where

βn =
(2n+ 2k + 2)!(

µ−ν+3
2

)
n+k+1

(
µ+ν+3

2

)
n+k+1

4n+k+1(2n+ 1)!
,

is also decreasing. Again for all n ≥ 0 and k ≥ 0, the ratio

βn+1

βn
=

(2n+ 2k + 4)(2n+ 2k + 3)

4
(
µ−ν+3

2 + n+ k + 1
) (

µ+ν+3
2 + n+ k + 1

) < 1,

provided (µ− ν + 5)(µ+ ν + 5) > 12. Hence the conclusion. �

From Theorem 2.1, we have few interesting consequence. For example, the
log-convexity of µ 7→ λµ,ν(x) means, for any α ∈ [0, 1] and for µ1, µ2 > −1,

λαµ1+(1−α)µ2,ν(x) ≤ λαµ1,ν(x)λ1−α
µ1,ν(x).(2.3)

In particular, if µ1 = µ+a > −1 and µ2 = µ−a > −1 for µ, a ∈ R, and α = 1/2,
then the above inequality gives the reverse of the Turàn’s type inequality for
the modified Lommel functions as

λ2
µ,ν(x) ≤ λµ+a,ν(x)λµ−a,ν(x).

Similarly, the log-convexity of ν 7→ λµ,ν(x) gives

λ2
µ,ν(x) ≤ λµ,ν+a(x)λµ,ν−a(x).
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6 S. R. MONDAL

3. Redheffer type bound

In this section we prove the Redheffer-type inequality for some special kind
Lommel and modified Lommel functions. From (1.7) and (1.8) it follows that

Sµ−1/2,1/2(x) =
zµ+1/2

(µ)(µ+ 1)

∞∏
j=1

(
1− x2

η2
µ,0,n

)
,(3.1)

and this implies

Lµ−1/2,1/2(x) = i−µ−1/2Sµ−1/2,1/2(iz) =
zµ+1/2

(µ)(µ+ 1)

∞∏
j=1

(
1 +

x2

η2
µ,0,n

)
.(3.2)

From (1.10) we have

λµ−1/2,1/2(x) = µ(µ+ 1)z−µ−1/2Lµ−1/2,1/2(x) =

∞∏
j=1

(
1 +

x2

η2
µ,0,n

)
.(3.3)

Also consider the normalized Lommel function as

Λµ−1/2,1/2(x) = µ(µ+ 1)z−µ−1/2Sµ−1/2,1/2(x) =

∞∏
j=1

(
1− x2

η2
µ,0,n

)
.(3.4)

Applying logarithmic differentiation on (3.3) gives

λ′µ−1/2,1/2(x)

zλµ−1/2,1/2(x)
=

∞∑
n=1

2

η2
µ,0,n + x2

.(3.5)

A calculation gives

lim
z→0

λ′µ,ν(x)

zλµ,ν(x)
= lim
z→0

∑∞
n=1

2nz2n−2

(µ−ν+3
2 )

n
(µ+ν+3

2 )
n

4n∑∞
n=0

z2n

(µ−ν+3
2 )

n
(µ+ν+3

2 )
n

4n

=
2

(µ+ 3)2 − ν2
.(3.6)

Now (3.5) and (3.6) together give the useful identity

∞∑
n=1

1

η2
µ,0,n

=
4

(2µ+ 5)2 − 1
=

1

(µ+ 2)(µ+ 3)
.(3.7)

For simplicity in sequel, we will use the notation ηµ,n for ηµ,0,n, the nth positive
zero of ϕ0(x).

Next we state and proof some results involving the function λµ−1/2,1/2 and
Λµ−1/2,1/2. The monotonic properties of l’Hospital’ rule as state in the following
result are useful in sequel.

Lemma 3.1 ([1, Lemma 2.2]). Suppose that −∞ < a < b < ∞ and p, q :
[a, b) 7→ ∞ are differentiable functions such that q′(x) 6= 0 for x ∈ (a, b). If
p′/q′ is increasing (decreasing) on (a, b), then so is (p(x)− p(a))/(q(x)− q(a)).

Next we will state and proof our main result in this section.
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BOUNDS AND INEQUALITIES OF THE MODIFIED LOMMEL FUNCTIONS 7

Theorem 3.1. Suppose that µ > −1 and Iµ := (−ηµ,1, ηµ,1).

(1) The function x 7→ λµ−1/2,1/2(x) is increasing on (0,∞).
(2) The function x 7→ λµ−1/2,1/2(x) is strictly log-convex on Iµ and strictly

geometrically convex on (0,∞).
(3) The modified Lommel functions λµ−1/2,1/2(x) satisfies the sharp expo-

nential Redheffer-type inequality(
η2
µ,1 + x2

η2
µ,1 − x2

)aµ
≤ λµ−1/2,1/2(x) ≤

(
η2
µ,1 + x2

η2
µ,1 − x2

)bµ
,(3.8)

on Iµ. Here, aµ = 0 and bµ =
2η2µ,1

(µ+2)(µ+3) are the best possible constant.

(4) The function x 7→ λµ−1/2,1/2(x)Λµ−1/2,1/2(x) is increasing on (−ηµ,1, 0]
and decreasing on [0, ηµ,1).

(5) The function

x 7→
λµ−1/2,1/2(x)

Λµ−1/2,1/2(x)
=
Lµ−1/2,1/2(x)

Sµ−1/2,1/2(x)
,

is strictly log-convex on Iµ.
(6) The Lommel functions Λµ−1/2,1/2(x) satisfies the sharp exponential

Redheffer-type inequality(
η2
µ,1 − x2

η2
µ,1

)aµ
≤ Λµ−1/2,1/2(x) ≤

(
η2
µ,1 − x2

η2
µ,1

)bµ
(3.9)

on Iµ. Here, aµ = 0 and bµ =
2η2µ,1

(µ+2)(µ+3) are the best possible constant.

Proof. Consider µ > −1 and x ∈ (−ηµ,1, ηµ,1).
(1) From (3.5) it is evident that

(log(λµ−1/2,1/2(x)))′ =
λ′µ−1/2,1/2(x)

λµ−1/2,1/2(x)
=

∞∑
n=1

2x

η2
µ,n + x2

> 0

on (0,∞). Thus, for µ > −1, the function x 7→ log(λµ−1/2,1/2(x)) is strictly
increasing on (0,∞) and consequently x 7→ λµ−1/2,1/2(x) is also increasing on
(0,∞).

(2) Again from (3.5) it follows that(
λ′µ−1/2,1/2(x)

λµ−1/2,1/2(x)

)′
=

∞∑
n=1

2(η2
µ,n − x2)

(η2
µ,n + x2)2

.

Clearly, the function x 7→ λ′µ−1/2,1/2(x)/λµ−1/2,1/2(x) is increasing for x ∈
(−ηµ,1, ηµ,1). This is equivalent to say that the function x 7→ λµ−1/2,1/2(x) is
log-convex on (−ηµ,1, ηµ,1).
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8 S. R. MONDAL

Another calculation from (3.5) yields(
zλ′µ−1/2,1/2(x)

λµ−1/2,1/2(x)

)′
=

∞∑
n=1

4zη2
µ,n

(η2
µ,n + x2)2

.

This implies that the function x 7→ xλ′µ−1/2,1/2(x)/λµ−1/2,1/2(x) is strictly

increasing for x ∈ (0,∞) and hence x 7→ λµ−1/2,1/2(x) is geometrically convex
on (0,∞).

(3) Consider the function

gµ(x) :=
log(λµ−1/2,1/2(x))

log(η2
µ,1 + x2)− log(η2

µ,1 − x2)
.

Denote p(x) := log(λµ−1/2,1/2(x)) and q(x) := log(η2
µ,1 +x2)− log(η2

µ,1−x2)
on x ∈ [0,∞). In view of (3.5), it follows that

p′(x)

q′(x)
=
η4
µ,n − x4

4xη2
µ,1

λ′µ−1/2,1/2(x)

λµ−1/2,1/2(x)
=

1

2η2
µ,1

∞∑
n=1

η4
µ,1 − x4

η2
µ,n + x2

and then

d

dx

(
p′(x)

q′(x)

)
= − x

η2
µ,1

∞∑
n=1

z4 + 2x2η2
µ,1 + η4

µ,n

(η2
µ,n + x2)2

≤ 0.

Thus, p′(x)/q′(x) is decreasing.
Therefore,

gµ(x) =
p(x)− p(0)

q(x)− q(0)
=
p(x)

q(x)

is decreasing too on [0, ηµ,1) and hence

aµ = lim
x→ηµ,1

gµ(x) < gµ(x) < lim
x→0

gµ(x) = bµ.

Finally,

lim
x→ηµ,1

p′(x)

q′(x)
= 0 and lim

x→0

p′(x)

q′(x)
=
η2
µ,1

2

∞∑
n=1

1

η2
µ,n

=
η2
µ,1

2(µ+ 2)(µ+ 3)

implies aµ = 0 and bµ = η2
µ,1/(2(µ+ 2)(µ+ 3)).

(4) From (3.6) and (3.4), it is evident that

λµ−1/2,1/2(x)Λµ−1/2,1/2(x) =

∞∏
n=1

(
1− x4

η4
µ,n

)
.

Thus, by the logarithmic differentiation it follows that(
λµ−1/2,1/2(x)Λµ−1/2,1/2(x))

)′
λµ−1/2,1/2(x)Λµ−1/2,1/2(x)

= −
∞∑
n=1

4x3

η4
µ,n − x4

.

Since x ∈ Iµ, the conclusion follows.
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BOUNDS AND INEQUALITIES OF THE MODIFIED LOMMEL FUNCTIONS 9

(5) From (3.4), we have the logarithmic differentiation of (Λµ−1/2,1/2(x))−1

as (
log
(
(Λµ−1/2,1/2(x))−1

))′
=

∞∑
n=1

2x

η2
µ,n − x2

and (
log
(
(Λµ−1/2,1/2(x))−1

))′′
= 2

∞∑
n=1

η2
µ,n + x2

(η2
µ,n − x2)2

> 0.

This conclude that the function x 7→ (Λµ−1/2,1/2(x))−1 is strictly log-convex on
Iµ. Finally, being the product of two strictly log-convex functions, the function

x 7→
λµ−1/2,1/2(x)

Λµ−1/2,1/2(x)
=
Lµ−1/2,1/2(x)

Sµ−1/2,1/2(x)

is also strictly log-convex. Note that the log-convexity of x 7→ λµ−1/2,1/2(x)
follows from part (2) of this theorem.

(6) To prove this result first we need to set up a Rayleigh type functions for
the Lommel function. Define the function

α(2m)
n,µ :=

∞∑
n=1

η−2m
µ,n , m = 1, 2, . . . .(3.10)

Logarithmic differentiation of (3.4) yield

xΛ′µ−1/2,1/2(x)

Λµ−1/2,1/2(x)
= −2

∞∑
n=1

x2

η2
µ,n − x2

=

∞∑
n=1

x2

η2
µ,n

(
1− x2

η2
µ,n

)−1

=

∞∑
n=1

x2

η2
µ,n

∞∑
m=0

x2m

η2m
µ,n

.

Interchanging the order of the summation it follows that

xΛ′µ−1/2,1/2(x)

Λµ−1/2,1/2(x)
= −2

∞∑
m=0

∞∑
n=1

x2m+2

η2m+2
µ,n

= −2

∞∑
m=1

α(2m)
n,µ x2m.(3.11)

Consider the function

ϕµ(x) :=
log(Λµ−1/2,1/2(x))

log
(

1− x2

η2µ,1

) =
pµ(x)

qµ(x)
.(3.12)

The binomial series together with (3.11) gives the ratio of p′µ and q′µ as

p′µ(x)

q′µ(x)
=

xΛ′µ−1/2,1/2(x)

Λµ−1/2,1/2(x)

−2x2

η2µ,1

(
1− x2

η2µ,1

)−1 =

∑∞
m=1 α

(2m)
n,µ x2m∑∞

m=1 η
−2m
µ,1 x2m

.(3.13)
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Denote dm = η2m
µ,1α

(2m)
n,µ . Then

dm+1 − dm = η2m+2
µ,1 α(2m+2)

n,µ − η2m
µ,1α

(2m)
n,µ =

∞∑
n=1

η2m
µ,1

η2m
µ,n

(
η2
µ,1

η2
µ,n

− 1

)
< 0.

This is equivalent to say that the sequence {dm} is decreasing, and hence by
Lemma 1.1 it follows that the ratio p′µ/q

′
µ is decreasing. In view of Lemma 3.1,

we have ϕµ = pµ/qµ is decreasing.
From (3.12) and (3.13), it can be shown that

lim
x→0

ϕµ(x) = lim
x→0

p′µ(x)

q′µ(x)
= lim
x→0

p′′µ(x)

q′′µ(x)
= lim
x→0

p′′µ(x)

q′′µ(x)
= η2

µ,1α
(2)
µ,n

and

lim
x→ηµ,1

ϕµ(x) = lim
x→ηµ,1

p′µ(x)

q′µ(x)
= lim
x→ηµ,1

∞∑
n=1

η2
µ,1 − x2

η2
µ,n − x2

= 1.

It is easy to seen that η2
µ,1α

(2)
µ,n = bµ. �
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