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SQUARE QUADRATIC PROXIMAL METHOD FOR

NONLINEAR COMPLIMENTARITY PROBLEMS

Abdellah Bnouhachem and Ali Ou-yassine

Abstract. In this paper, we propose a new interior point method for

solving nonlinear complementarity problems. In this method, we use a
new profitable searching direction and instead of using the logarithmic

quadratic term, we use a square root quadratic term. We prove the
global convergence of the proposed method under the assumption that

F is monotone. Some preliminary computational results are given to

illustrate the efficiency of the proposed method.

1. Introduction

Let R stand for the real axis; and R+ = {x ∈ R;x ≥ 0}, R++ = {x ∈ R;x >
0}, denote the positive half-axis and strict positive half-axis, respectively.
Further, given n ∈ N, put

Rn+ = {x = (x1, . . . , xn)>;x1, . . . , xn ∈ R+}.

The nonlinear complementarity problem (NCP) is to find a vector x ∈ Rn such
that

(1) x ≥ 0, F (x) ≥ 0 and xTF (x) = 0,

where F is a nonlinear mapping from Rn into itself. Throughout this paper
we assume that F is continuous and monotone with respect to Rn+, that is,

(F (x)−F (y))T (x−y) ≥ 0 for all x, y ∈ Rn+ and the solution set of (1), denoted
by Ω∗, is nonempty.

NCP was introduced by Cottle in his PhD thesis in the early 1960’s. Com-
plementarity problems have attracted great attention of researchers and several
works have been published to set up the fundamental theoretical results of this
problem (see, e.g., [9, 10] and the references therein).

Many attempts have been made to develop implementable algorithms for the
solution of NCP. A popular way to solve the NCP is to reformulate as finding
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2 A. BNOUHACHEM AND A. OU-YASSINE

the zero point of the operator T (x) = F (x) +NRn
+

(x), i.e., find x∗ ∈ Rn+ such

that 0 ∈ T (x∗), where NRn
+

(.) is the normal cone operator to Rn+ defined by

NRn
+

(x) =

{
{y ∈ Rn : yT (v − x) ≤ 0, ∀v ∈ Rn+} if x ∈ Rn+,
∅ otherwise.

A classical method to solve this problem is the proximal point algorithm
(PPA), which starting with any vector x0 ∈ Rn+ and βk ≥ β > 0, iteratively

updates xk+1 conforming the following problem:

(2) 0 ∈ βkT (x) +∇xq(x, xk),

where

(3) q(x, xk) =
1

2
‖x− xk‖2

is a quadratic function of x.
Recently, many studies have been focused on some new interior point meth-

ods to tackle NCP. This type of methods have a common feature which used to
force the iterates {xk+1} to stay in the interior of the nonnegative orthant Rn++.
Auslender et al. [1] have proposed a new type of proximal interior algorithms
via replacing the quadratic function (3) by dφ(x, xk) which could be defined as

dφ(x, y) =

n∑
j=1

y2jφ(y−1j xj).

Let ν > µ > 0 be given fixed parameters, and φ is defined by

φ(t) =

{
ν
2 (t− 1)2 + µϕ(t) if t > 0,
+∞ otherwise.

The following few examples of ϕ function enjoy many attractive properties for
developing efficient algorithms to solve NCP.

ϕ1(t) = t− log(t)− 1,

ϕ2(t) = t log(t)− t+ 1,

ϕ3(t) = (
√
t− 1)2.

In [2], Auslender et al. have used an logarithmic-quadratic proximal (LQP)
method by using ϕ1 (with ν = 2, µ = 1) for solving variational inequalities
over polyhedra. Later, Bnouhachem [3] has proposed a new modified LQP
method by using ϕ2 (with ν = 1, µ ∈ (0, 1)). The interior point methods with
logarithmic-quadratic proximal regularization, we quoted references [2–8, 11,
12,15,17].

Let ν = 1
2 and µ ∈ (0, 1), in our proposed method, we consider the function

ϕ3, and we get

φ(t) =

{
1
4 (t− 1)2 + µ(

√
t− 1)2 if t > 0,

+∞ otherwise.
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SQUARE QUADRATIC PROXIMAL METHOD 3

Then, the problem (2) becomes for given xk ∈ Rn++ and βk ≥ β > 0, the new

iterate xk+1 is unique solution of the following set-valued equation:

(4) 0 ∈ βkT (x) +∇xdφ(x, xk),

where

dφ(x, xk)=

1
4‖x− x

k‖2 + µ
n∑
j=1

(
xkjxj − 2(xkj )2

√
xj

xk
j

+ (xkj )2
)

if x ∈ Rn++,

+∞ otherwise.

It is easy to see that

∇xdφ(x, xk) =
1

2
(x− xk) + µ

n∑
j=1

xkj − (xkj )2√
xkj

1
√
xj


=

1

2
(x− xk) + µ(xk −Xk(

√
x)−1),(5)

where Xk = diag(
√
xk1

3
, . . . ,

√
xkn

3
) and

√
x = (

√
x1, . . . ,

√
xn).

Since dφ(x, xk) includes both square and quadratic terms, this method is
called the Square-Quadratic Proximal (SQP) method.

Then the problem (4) is equivalent to the following systems of nonlinear
equations

(6) βkF (x) +
1

2
(x− xk) + µ(xk −Xk(

√
x)−1) = 0.

The aim of this paper is to develop an algorithm for solving nonlinear compli-
mentarity problems. More precisely, instead of using the logarithmic quadratic
term, we used an square root quadratic term. It is more practical to find ap-
proximate solutions of a system of nonlinear equations (6) rather than exact
solutions due to the fact in general that excludes some practical applications.
Driven by the fact of eliminating this drawback, we presented a prediction-
correction method to solve (6) approximately. Under certain conditions, the
global convergence of the proposed method is proved. Our results can be viewed
as significant extensions of the previously known results.

2. Preliminaries

The following lemma provides some basic properties of projection onto Rn+.
We denote by PRn

+
(·) the projection under Rn+, that is,

PRn
+

(z) = argmin{‖z − x‖ : x ∈ Rn+}.

Lemma 2.1 ([14]). We have the following inequalities.

(7) (y − PRn
+

(y))T (PRn
+

(y)− x) ≥ 0, ∀y ∈ Rn, ∀x ∈ Rn+.

(8) ‖PRn
+

(v)− u‖2 ≤ ‖v − u‖2 − ‖v − PRn
+

(v)‖2, ∀v ∈ Rn, u ∈ Rn+.
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4 A. BNOUHACHEM AND A. OU-YASSINE

Proof. First, based on the definition of PRn
+

, we have

‖y − PRn
+

(y)‖ ≤ ‖y − z‖ ∀z ∈ Rn+.

Note that for any y ∈ Rn, PRn
+

(y) ∈ Rn+, since Rn+ ⊂ Rn is convex and closed,

then for any x ∈ Rn+ and θ ∈ (0, 1), it follows that

θx+ (1− θ)PRn
+

(y) = PRn
+

(y) + θ(x− PRn
+

(y)) ∈ Rn+
and

‖y − PRn
+

(y)‖2 ≤ ‖y − PRn
+

(y)− θ(x− PRn
+

(y))‖2.
Hence, we get

[y − PRn
+

(y)]T [x− PRn
+

(y)] ≤ θ

2
‖x− PRn

+
(y)‖2, ∀y ∈ Rn+ and θ ∈ (0, 1).

Letting θ → 0+ and inequality (7) is proved. Moreover, using (7) we have

‖PRn
+

(y)− x‖2 = ‖(y − x)− (y − PRn
+

(y))‖2

= ‖y − x‖2 + 2(x− y)T (y − PRn
+

(y)) + ‖y − PRn
+

(y)‖2

= ‖y − x‖2 + 2(x− PRn
+

(y))T (y − PRn
+

(y))− ‖y − PRn
+

(y)‖2

≤ ‖y − x‖2 − ‖y − PRn
+

(y)‖2,

and inequality (8) is proved. �

We need the following result in the convergence analysis of the proposed
method.

Lemma 2.2. For given xk > 0 and q ∈ Rn, let x be the positive solution of
the following equation:

(9) q +
1

2
(x− xk) + µ(xk −Xk(

√
x)−1) = 0

where Xk = diag(
√
xk1

3
, . . . ,

√
xkn

3
) and

√
x = (

√
x1, . . . ,

√
xn), then for any

y ≥ 0 we have

(10) (x− y)T (−q) ≥ 1 + µ

4

(
‖x− y‖2 − ‖xk − y‖2

)
+

1− µ
4
‖xk − x‖2.

Proof. For each t > 0 we have 1
2

(
1− 1

t

)
≤ 1 − 1√

t
≤ 1

2 (t − 1), then we obtain

after multiplication by yjx
k
j ≥ 0 for each j = 1, . . . , n,

yjx
k
j

1−

√
xkj
√
xj

 ≤ yjxkj 1

2

(
xj
xkj
− 1

)
=

1

2
yj(xj − xkj )

and after multiplication by xjx
k
j ≥ 0 for each j = 1, . . . , n,

−xjxkj

1−

√
xkj
√
xj

 ≤ xjxkj 1

2

(
xkj
xj
− 1

)
=

1

2
xkj (xkj − xj),
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SQUARE QUADRATIC PROXIMAL METHOD 5

adding the two inequalities, then we obtained

(yj − xj)
(

1

2
(xj − xkj ) + µ

(
xkj −

(√
xkj

)3
(
√
xj)
−1
))

≤ 1

2
µ(yj − xkj )(xj − xkj ) +

1

2
(xj − xkj )(yj − xj).

Using the identities

1

2
(yj − xkj )(xj − xkj ) =

1

4

(
(xj − xkj )2 − (xj − yj)2 + (yj − xkj )2

)
,

1

2
(xj − xkj )(yj − xj) =

1

4

(
(yj − xkj )2 − (yj − xj)2 − (xj − xkj )2

)
and recalling (9), thus we obtained

(xj − yj)(−qj) ≥
1 + µ

4

(
(xj − yj)2 − (xkj − yj)2

)
+

1− µ
4

(xkj − xj)2.

Summing over j = 1, . . . , n, encountered (10) and this completes the proof. �

3. Square quadratic proximal method

We propose the following SQP method for solving problem (1). For given
x1 > 0, µ ∈ (0, 1) and D0 = 0, the proposed method consists of two steps, the
first step offers x̃k, and the second step produces the new iterate xk+1.

Prediction step: Find an approximate solution x̃k of (6), called predictor, such
that

(11) 0 ≈ βkF (x) +
1

2
(x− xk) + µ(xk −Xk(

√
x)−1) = ξk

and ξk := βk(F (x̃k)− F (xk)) satisfies

(12) ‖ξk‖ ≤ η‖xk − x̃k‖, 0 < η <
1

2
.

Correction step: Compute

(13) dk =
1

2
(xk − x̃k) +

1

1 + µ
ξk

and

(14) Dk = dk + θkDk−1,

where

(15) θk = max

(
0,
−dTkDk−1

‖Dk−1‖2

)
.

The new iterate xk+1(αk) is defined by

(16) xk+1(αk) = ρxk + (1− ρ)PRn
+

[
xk − αkDk

]
, ρ ∈ (0, 1),
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6 A. BNOUHACHEM AND A. OU-YASSINE

where

(17) αk =
ψ(xk)

‖Dk‖2
and ψ(xk) =

1

2(1 + µ)
‖xk − x̃k‖2 +

1

1 + µ
(xk − x̃k)T ξk.

Remark 3.1. It follows from (12) that

(18) ψ(xk) ≥ 1− 2η

2(1 + µ)
‖xk − x̃k‖2.

We need the following results to study the convergence analysis of the pro-
posed method.

Lemma 3.1. Using the definitions of dk and Dk, then

(19) ‖Dk‖ ≤ ‖dk‖.

Proof. It follows from (14) that

‖Dk‖2 = ‖dk + θkDk−1‖2

= ‖dk‖2 −
(dTkDk−1)2

‖Dk−1‖2

≤ ‖dk‖2

which implies that

‖Dk‖ ≤ ‖dk‖. �

Theorem 3.1. Let x∗ be any solution of (1). For given xk ∈ Rn++ and βk > 0,

let x̃k and ξk satisfied the condition (12), then it holds

(20) (xk − x∗)T dk ≥ ψ(xk).

Proof. For given x∗ be any solution of (1), xk ∈ Rn++ and βk > 0, let x̃k and

ξk be obtained by (11). By setting q = βkF (x̃k)− ξk in (10), we obtain

(x̃k − x∗)T (ξk − βkF (x̃k))

≥ 1 + µ

4

(
‖x̃k − x∗‖2 − ‖xk − x∗‖2

)
+

1− µ
4
‖xk − x̃k‖2,(21)

then

(x̃k − x∗)T ξk ≥
1 + µ

4

(
‖x̃k − x∗‖2 − ‖xk − x∗‖2

)
+

1− µ
4
‖xk − x̃k‖2 + βk(x̃k − x∗)TF (x̃k).(22)

Since F is monotone and x∗ is solution of (1), we get

(23) (x̃k − x∗)TF (x̃k) ≥ (x̃k − x∗)TF (x∗) ≥ 0.

Substituting (23) in (22), we obtain

1

1 + µ
(xk − x∗)T ξk ≥

1

4

(
‖x̃k − x∗‖2 − ‖xk − x∗‖2

)
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SQUARE QUADRATIC PROXIMAL METHOD 7

+
1− µ

4(1 + µ)
‖xk − x̃k‖2 +

1

1 + µ
(xk − x̃k)T ξk.(24)

Using the following identity

(25)
1

2
(xk − x∗)T (xk − x̃k) =

1

4

(
‖xk − x∗‖2 − ‖x̃k − x∗‖2

)
+

1

4
‖xk − x̃k‖2

and (17), (24), we have

(xk − x∗)T dk =
1

2
(xk − x∗)T (xk − x̃k) +

1

1 + µ
(xk − x∗)T ξk

≥ 1

2(1 + µ)
‖xk − x̃k‖2 +

1

1 + µ
(xk − x̃k)T ξk

= ψ(xk).

Therefore, the assertion of this lemma is proved. �

Lemma 3.2. For any k ≥ 1, we have

DT
k−1(xk − x∗) ≥ 0.

Proof. Note that this is trivially true for k = 1 since D0 = 0. By induction,
consider any k ≥ 2 and assume that

DT
k−2(xk−1 − x∗) ≥ 0.

Using the definition of Dk−1, we have

DT
k−1(xk − x∗) = DT

k−1(xk−1 − x∗) +DT
k−1(xk − xk−1)

= dTk−1(xk−1 − x∗)+ θk−1D
T
k−2(xk−1 − x∗)+DT

k−1(xk − xk−1)

≥ dTk−1(xk−1 − x∗) +DT
k−1(xk − xk−1)

≥ ψ(xk−1)− ‖Dk−1‖‖PRn
+

[
xk−1 − αk−1Dk−1

]
− xk−1‖

≥ ψ(xk−1)− ‖Dk−1‖‖αk−1Dk−1‖
= 0,

where the second inequality follows from (20). �

Remark 3.2. From Theorem 3.1 and Lemma 3.2 it is easy to prove that

(26) (xk − x∗)TDk ≥ ψ(xk).

To ensure that xk+1(αk) is closer to the solution set than xk. For this
purpose, we define

(27) Θ(αk) = ‖xk − x∗‖2 − ‖xk+1(αk)− x∗‖2.

The following theorem provides a unified framework for proving the conver-
gence of the proposed algorithm.
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8 A. BNOUHACHEM AND A. OU-YASSINE

Theorem 3.2. Let Dk and ψ be defined by (14) and (17) respectively. Then
for any x∗ ∈ Ω∗ and αk > 0, we have

(28) Θ(αk) ≥ (1− ρ)Φ(αk),

where

(29) Φ(αk) = αkψ(xk).

Proof. Since x∗ ∈ Ω∗ ⊂ Rn+ and let xk∗(αk) = PRn
+

[
xk −αkDk

]
, it follows from

(8) that

(30) ‖xk∗(αk)− x∗‖2 ≤ ‖xk − αkDk − x∗‖2 − ‖xk − αkDk − xk∗(αk)‖2.

On the other hand, we have

‖xk+1(αk)− x∗‖2 = ‖ρ(xk − x∗) + (1− ρ)(xk∗(αk)− x∗)‖2

= ρ2‖xk − x∗‖2 + (1− ρ)2‖xk∗(αk)− x∗‖2

+ 2ρ(1− ρ)(xk − x∗)T (xk∗(αk)− x∗).

Using the following identity

2(a+ b)T b = ‖a+ b‖2 − ‖a‖2 + ‖b‖2

for a = xk − xk∗(αk), b = xk∗(αk)− x∗ and (30), and using 0 < ρ < 1, we obtain

‖xk+1(αk)− x∗‖2 = ρ2‖xk − x∗‖2 + (1− ρ)2‖xk∗(αk)− x∗‖2

+ ρ(1− ρ){‖xk − x∗‖2 − ‖xk − xk∗(αk)‖2

+ ‖xk∗(αk)− x∗‖2}

= ρ‖xk − x∗‖2 + (1− ρ)‖xk∗(αk)− x∗‖2

− ρ(1− ρ)‖xk − xk∗(αk)‖2

≤ ρ‖xk − x∗‖2 + (1− ρ)‖xk − αkDk − x∗‖2

− (1− ρ)‖xk − αkDk − xk∗(αk)‖2

− ρ(1− ρ)‖xk − xk∗(αk)‖2

= ‖xk − x∗‖2 − (1− ρ){‖xk − xk∗(αk)− αkDk‖2

+ ρ‖xk − xk∗(αk)‖2 − α2
k‖Dk‖2 + 2αk(xk − x∗)TDk}

≤ ‖xk − x∗‖2 − (1− ρ){2αkψ(xk)− α2
k‖Dk‖2},

where the second inequality follows from (26). Using the definition of Θ(αk)
and Φ(αk), then (28) is proved. �

In the next theorem, we show that αk and Φ(αk) are bounded away from
zero, and it is one of the keys to prove the global convergence results.
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SQUARE QUADRATIC PROXIMAL METHOD 9

Theorem 3.3. For given xk ∈ Rn+ and βk > 0, let x̃k and ξk satisfied the
condition (12), then we have the following,

(31) αk ≥
1− 2η

4(1 + µ)

and

(32) Φ(αk) ≥ (1− 2η)2

8(1 + µ)2
‖xk − x̃k‖2.

Proof. If (xk− x̃k)T ξk ≤ 0, since µ > 0 it follows from (12), (13), (14) and (19)
that

‖Dk‖2 ≤ ‖dk‖2

≤ 1

4
‖xk − x̃k‖2 +

1

(1 + µ)2
‖ξk‖2

≤ ‖xk − x̃k‖2 + ‖ξk‖2

≤ 2‖xk − x̃k‖2,(33)

from (18) and (33), we obtain

αk =
ψ(xk)

‖Dk‖2
≥ 1− 2η

4(1 + µ)
.

Otherwise, if (xk − x̃k)T ξk ≥ 0, it follows from 0 < µ < 1 and (12) that

ψ(xk) =
1

2(1 + µ)
‖xk − x̃k‖2 +

1

1 + µ
(xk − x̃k)T ξk

≥ 1

1 + µ
{1

4
‖xk − x̃k‖2 +

1

1 + µ
(xk − x̃k)T ξk

+
1

4
‖xk − x̃k‖2}

≥ 1

1 + µ
{ 1

16
‖xk − x̃k‖2 +

1

4(1 + µ)
(xk − x̃k)T ξk

+
1

4(1 + µ)2
‖ξk‖2}

=
1

4(1 + µ)
‖dk‖2

≥ 1

4(1 + µ)
‖Dk‖2

and thus

αk ≥
1

4(1 + µ)
≥ 1− 2η

4(1 + µ)
.

Using (29), (31) and (18), directly we obtain (32). �
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10 A. BNOUHACHEM AND A. OU-YASSINE

For fast convergence, we take a relaxation factor γ ∈ [1, 2) and the step-size
αk in (16) by αk = γαk. Through simple manipulation we obtain

Φ(γαk) = 2γαkψ(xk)− (γ2αk)(αk‖Dk‖2)

= (2γαk − γ2αk)ψ(xk)

= γ(2− γ)Φ(αk).(34)

It follows from Theorem 3.2 and Theorem 3.3 that there is a constant c > 0
such that

(35) ‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − c‖xk − x̃k‖2 ∀x∗ ∈ Ω∗.

Now, the convergence of the proposed method could be proved as follows:

Theorem 3.4 ([3]). If inf∞k=0 βk = β > 0, then the sequence {xk} generated
by the proposed method converges to some x∞ which is a solution of the NCP.

4. Preliminary computational results

For numerical experimental we need to find the value of the approximate
solution x̃k, in the special case ξk = βk(F (x̃k)−F (xk)), then (11) is equivalent
to the following system of nonlinear equations

(36) βkF (xk) +
1

2
(x̃k − xk) + µ(xk −Xk(

√
x̃k)−1) = 0,

hence

1

2
x̃kj − µ

(√
xkj

)3
√
x̃kj

+

(
βkFj(x

k)− 1

2
xkj + µxkj

)
= 0, j = 1, . . . , n.

Then

(37)
1

2
x̃kj − µ

(√
xkj

)3
√
x̃kj

+

βkFj(xk)− 1

2
xkj + µ

(
√
xkj )3√
xkj

 = 0, j = 1, . . . , n.

The recursion of classical Newton method for the above problem is

x̃j
k := xj

k − 2βk
1 + µ

Fj(x
k).

The solution of (37) is x̃k > 0, to avoid the non-positive value x̃j
k in the

iteration process, we take

x̃j
k := ρ1xj

k + (1− ρ1) max{xjk −
2βk

1 + µ
Fj(x

k), 0}, j = 1, . . . , n, ρ1 ∈ (0, 1).

We consider a network [13,16,17] shown in Fig.1 which consisted of 7 nodes,
11 links, we use the same notations as [17]. The traffic equilibrium problems
can be described as follows:
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SQUARE QUADRATIC PROXIMAL METHOD 11

Let t = {ta, a ∈ L} be the row vector of link costs, with ta denoting the user
cost of travelling link a which is given by

(38) ta(fa) = t0a

[
1 + 0.15

(
fa
Ca

)4
]
,

where t0a is the free-flow travel cost on link a and Ca is designed capacity of
link a. Let P denote the set of all the paths concerned. Let θ = {θp, p ∈ P}
be the vector of (path) travel cost. For given link travel cost vector t, θ is a
mapping of the path-flow u, which is given by

θ(u) = At(u) = At(ATu).

Associated with every O/D pair ω, there is a travel disutility λω(d), which is
defined as following

(39) λω(d) = −mω log(dω) + qω.

Note that both the path costs and the travel disutilities are functions of the
flow pattern u. The traffic network equilibrium problem is to seek the path
flow pattern u∗, which induces a demand pattern d∗ = d(u∗), for every O/D
pair ω and each path p ∈ Pω,

Tp(u) = θp(u)− λω(d(u)).

The problem can be reduced to a variational inequality in the space of path-flow
pattern u:

(40) Find u∗ ≥ 0 such that (u− u∗)TT (u∗) ≥ 0, ∀u ≥ 0.

n3
Q
Q
Q
Q
Q
Q
Q
Q
Qs

107 ?
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��
�1
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2
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n4 PPPPPPPPPq3

n5 ����
��

��
�1

4

9n2 -

6

8

5

n6
6

6

�
�
�
�
�
�
�
�
�3

Figure 1. The network used for the numerical test.

The free-flow travel cost and the designed capacity of links (38) are given in
Table 1, the O/D pairs and the coefficient m and q in the disutility function
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(39) are given in Table 2. For this example, there are together 12 paths for the
4 given O/D pairs listed in Table 4.

Table 1. The free-flow cost and the designed capacity of links
in (38)

Link Free-flow travel time t0a Capacity Ca Link Free-flow travel time t0a Capacity Ca

1 6 200 7 5 150
2 5 200 8 10 150
3 6 200 9 11 200
4 16 200 10 11 200
5 6 100 11 15 200
6 1 100 − − −

Table 2. The O/D pairs and the coefficient m and q in (39)

No. of the pair O/D pair mω qω
1 (1, 7) 25 25 log 600
2 (2, 7) 33 33 log 500
3 (3, 7) 20 20 log 500
4 (6, 7) 20 20 log 400

Table 3. Numerical results for different ε

Different The method in [17] The proposed method
ε No. It. CPU(Sec.) No. It. CPU(Sec.)

10−4 231 0.031 182 0.023

10−5 284 0.037 235 0.032

10−6 338 0.041 287 0.038

10−7 391 0.046 340 0.042

10−8 444 0.051 393 0.048

In all tests we take the logarithmic proximal parameter µ = 0.9, ρ = ρ1 = 0.01, γ =
1.9 and η = 0.45. All iterations start with x1 = (0.5, . . . , 0.5)T and β1 = 1, and
stopped whenever ‖min(xk, F (xk))‖∞ ≤ ε. The iteration numbers and the compu-
tational time for the proposed method and the method in [17] for different ε are
reported in Table 3. For the case ε = 10−8, the optimal path flow and link flow are
given in Tables 4 and 5, respectively.

Table 3 shows that the proposed method is more flexible and efficient for the
problem tested. Moreover, it demonstrates computationally that the new method
is more effective than that in [17] in the sense that the new method needs fewer
iterations and less computational time.
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SQUARE QUADRATIC PROXIMAL METHOD 13

Table 4. The optimal path follow

O/D pair Path no. Link of path Optimal path-flow

1 (1, 3) 165.3145
O/D pair (1,7) 2 (2, 4) 0

3 (11) 138.5735
4 (5, 1, 3) 82.5281
5 (5, 2, 4) 0

O/D pair (2,7) 6 (5, 11) 55.7871
7 (8, 6, 4) 0
8 (8, 9) 87.0260

O/D pair (3,7) 9 (7, 3) 19.7549
10 (10) 229.9747

O/D pair (6,7) 11 (9) 178.5600
12 (6, 4) 0

Table 5. The optimal link flow

Link no. Link flow Link no. Link flow Link no. Link flow Link no. Link flow
1 247.8426 4 0 7 19.7549 10 229.9747
2 0 5 138.3152 8 87.0260 11 194.3606
3 267.5974 6 0 9 265.5860 − −

5. Concluding remarks

In this paper, we proposed a new class of predictor-corrector algorithms for solving
nonlinear complementarity problems by using an square root quadratic proximal term.
Global convergence of the proposed method is proved under mild assumptions. The
numerical results showed that our algorithm is efficient for the problem tested, well
as the computational results emphasis that its very significant.

Acknowledgements. The authors are very grateful to the referees for their careful
reading, comments, and suggestions, which help us improve the presentation of this
paper.
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