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ON 3-DIMENSIONAL LORENTZIAN CONCIRCULAR

STRUCTURE MANIFOLDS

Sudhakar Kumar Chaubey and Absos Ali Shaikh

Abstract. The aim of the present paper is to study the Eisenhart prob-

lems of finding the properties of second order parallel tensors (symmetric
and skew-symmetric) on a 3-dimensional LCS-manifold. We also inves-

tigate the properties of Ricci solitons, Ricci semisymmetric, locally φ-
symmetric, η-parallel Ricci tensor and a non-null concircular vector field

on (LCS)3-manifolds.

1. Introduction

Lorentzian manifold is one of the most important sub-class of pseudo Rie-
mannian manifolds. It plays a crucial role in mathematical physics (specially
in the development of the theory of relativity and cosmology). Matsumoto et
al. ([23, 24]) gave the idea of Lorentzian para-Sasakian manifolds (briefly LP-
Sasakian manifolds). In 2003, Shaikh [28] extended the notion of LP-Sasakian
manifolds by considering the fact of concircular vector field and called them the
Lorentzian concircular structure manifolds (briefly (LCS)n-manifolds). Since
then the properties of such manifolds have been studied by many geometers
(for instance, see [12–19], [29–38], [46–48]).

Eisenhart [9] studied the properties of second order parallel symmetric tensor
in 1923. He proved that if a positive definite Riemannian manifold confesses a
second order parallel symmetric covariant tensor other than a constant multiple
of the metric tensor, then it is reducible. Levy [22] in 1925, demonstrated that
a second order parallel symmetric non-degenerated tensor of type (0, 2) in a
space form is proportional to the metric tensor. Eisenhart and Levy studied
the properties of second order parallel tensor locally while Sharma [39] studied
the properties of same tensor globally based on Ricci identities on complex
space forms. Since then, many authors examined the Eisenhart problems of
finding the properties of symmetric and skew-symmetric parallel tensors on
various spaces and obtained many geometrical results. As illustrations, the
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2 S. K. CHAUBEY AND A. A. SHAIKH

Eisenhart problems on almost contact metric manifolds were considered by
Sharma ([40–42]), on f -Kenmotsu manifold by Calin et al. [4], on N(k)-quasi
Einstein manifold by Crasmareanu [7], on space with vanishing quasi constant
curvature and Vaisman manifolds by Bejan et al. ([1,2]), on almost Kenmotsu
manifold by Wang et al. [45], on α-Sasakian manifold by Das [8], on space of
quasi constant curvature by Jia [20], on (LCS)n-manifold by second author et
al. [6] and many others.

Hamilton [10] introduced the notion of Ricci flow to obtain a canonical metric
on a differentiable manifold in the beginning of 80′s. After that it became a
powerful tool to study Riemannian manifolds of positive curvature. To prove
Poincaré conjecture, Perelman ([26, 27]) used Ricci flow and its surgery. Also
Brendle and Schoen [3] proved the differentiable sphere theorem by using Ricci
flow. The evolution equation for metrics on a Riemannian manifold, called
Ricci flow and defined as

∂

∂t
gij(t) = −2Sij ,

where Sij denote the components of Ricci tensors. The solutions of Ricci flow
are called Ricci solitons if they are governed by a one parameter family of
diffeomorphisms and scalings. A triplet (g, V, λ) on a Riemannian manifold
(M, g) is called Ricci soliton [11], natural generalization of Einstein metric,
and satisfies

(1)
1

2
LV g + S = λg,

where S is the Ricci tensor, LV g denotes the Lie derivative of the metric g
along the vector field V on M and λ is a real constant [11]. A Ricci soliton is
said to be steady, expanding and shrinking if λ = 0, < 0 and > 0 respectively.
The properties of Ricci solitons on (LCS)n-manifolds have been studied by Hui
and his co-authors ([6, 16–19]) and others.

Another important sub area of differential geometry is symmetric spaces.
The perception of local symmetry on different spaces has been weakened by
number of geometers in distinct extent. As a feeble version of local symmetry,
Takahashi [44] introduced and studied the concept of local φ-symmetry on a
Sasakian manifold. The properties of local φ-symmetry on (LCS)n-manifolds
have been noticed in [33]. From the above study, we come to the conclusion
that the study of Ricci solitons, Ricci semisymmetric, locally φ-symmetric, η-
parallelism, second order parallel symmetric and skew-symmetric tensors and
non-null concircular vector fields are lacking in 3-dimensional LCS-manifolds.
To fill these gaps, we are going to study all these properties on LCS-manifolds
of dimension three. We will organize the present paper as follows:

Section 1 is about the brief introduction of (LCS)n-manifolds, Ricci soli-
tons, symmetric spaces and Eisenhart problem of finding symmetric and skew-
symmetric properties of second order parallel tensors while in second section
we give basic results of (LCS)3-manifolds, Ricci soliton and η-parallel Ricci
tensor. In Section 3, we prove that a (LCS)3-manifold is space form if and
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ON 3-DIMENSIONAL LORENTZIAN CONCIRCULAR STRUCTURE MANIFOLDS 3

only if it is Ricci semisymmetric. The properties of locally φ-symmetric and
η-parallel Ricci tensor on a 3-dimensional LCS-manifold are studied in Section
4 and 5 respectively. Sections 6 and 7 deal with study of Eisenhart problem of
finding the properties of symmetric and skew-symmetric second order parallel
tensors. In the last section, we evaluate the geometrical properties of a non-null
concircular vector field.

2. Preliminaries

A Lorentzian manifold of dimension n is a doublet (M, g), where M is a
smooth connected para-compact Hausdorff manifold of dimension n and g is
a Lorentzian metric, that is, M admits a smooth symmetric tensor field g of
type (0, 2) such that for each point p ∈M the tensor gp : TpM ×TpM → < is a
non degenerate inner product of signature (−,+, . . . ,+), where TpM denotes
the tangent space of M at p and < is the real number space. A non-zero vector
field V ∈ TpM is said to be time like (resp., non-space like, null, and space
like) if it satisfies gp(V, V ) < 0 (resp., ≤ 0,= 0, > 0) [25].

Definition. In a Lorentzian manifold (M, g) a vector field ρ defined by

g(X, ρ) = B(X)

for any X ∈ χ(M) is said to be a concircular vector field if

(∇XB)(Y ) = α{g(X,Y ) + ω(X)ω(Y )},
where α is a non-zero scalar and ω is a closed 1-form [49].

If a Lorentzian manifold M admits a unit time like concircular vector field
ξ, called the generator of the manifold, then we have

(2) g(ξ, ξ) = −1.

Since ξ is the unit concircular vector field on M , there exists a non-zero 1-form
η such that

(3) g(X, ξ) = η(X),

which satisfies the following equation

(4) (∇Xη)(Y ) = α{g(X,Y ) + η(X)η(Y )}(α 6= 0)

for all vector fields X and Y , where ∇ denotes the operator of covariant dif-
ferentiation with respect to the Lorentzan metric g and α is a non-zero scalar
function satisfies

(5) (∇Xα) = Xα = dα(X) = ρη(X),

where ρ being a certain scalar function given by ρ = −(ξα). If we put

(6) φX =
1

α
∇Xξ,

then with the help of (3), (4) and (6), we can find

(7) φX = X + η(X)ξ,
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4 S. K. CHAUBEY AND A. A. SHAIKH

which shows that φ is a tensor field of type (1, 1), called the structure tensor of
the manifold M . Hence the Lorentzian manifold M of class C∞ equipped with
a unit timelike concircular vector field ξ, its associated 1-form η and (1, 1)-
tensor field φ is said to be a Lorentzian concircular structure manifold (briefly
(LCS)n-manifolds) [28]. Especially, if we take α = 1, then we can obtain the
LP-Sasakian structure of Matsumoto [23]. Thus we can say that the (LCS)n-
manifold is the generalization of LP-Sasakian manifold. It is noteworthy to
mention that LCS-manifold is invariant under a conformal change whereas LP -
Sasakian structure is not so [36]. In (LCS)3-manifolds, the following relations
hold [28]:

η(ξ) = −1, φξ = 0, φ2X = X + η(X)ξ, η(φX) = 0

and g(φX, φY ) = g(X,Y ) + η(X)η(Y ),(8)

(9) η(R(X,Y )Z) = (α2 − ρ){η(X)g(Y,Z)− η(Y )g(X,Z)},

(10) R(X,Y )ξ = (α2 − ρ){η(Y )X − η(X)Y },

(11) R(ξ,X)Y = (α2 − ρ){g(X,Y )ξ − η(Y )X},

(12) (∇Xφ)(Y ) = α{g(X,Y )ξ + 2η(X)η(Y )ξ + η(Y )X},

(13) S(X, ξ) = 2(α2 − ρ)η(X),

(14) S(φX, φY ) = S(X,Y ) + 2(α2 − ρ)η(X)η(Y ),

(15) Xρ = dρ(X) = βη(X)

for any vector fields X, Y , Z, where R, S denote the curvature tensor and the
Ricci tensor of the manifold M respectively. In consequence of equations (6),
(7) and (8), we get

(16) (Lξg)(X,Y ) = 2α{g(X,Y ) + η(X)η(Y )}.

The notion of η-parallelism on a Sasakian manifold was introduced by Kon
[21]. A (LCS)3-manifold is said to be η-parallel Ricci tensor if its non-vanishing
Ricci tensor S satisfies the tensorial relation

(17) (∇XS)(φY, φZ) = 0

for all vector fields X, Y and Z on M .
On a 3-dimensional semi-Riemannian manifold, we have

R(X,Y )Z = g(Y,Z)QX − g(X,Z)QY + S(Y, Z)X

− S(X,Z)Y − r

2
{g(Y,Z)X − g(X,Z)Y },(18)
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ON 3-DIMENSIONAL LORENTZIAN CONCIRCULAR STRUCTURE MANIFOLDS 5

where Q denotes the endomorphism of the tangent space corresponding to Ricci
tensor, i.e., S(X,Y ) = g(QY,Z) and r is the scalar curvature of the manifold.
Putting Z = ξ in (18) and using (3), (10) and (13), we get

(19) η(Y )QX − η(X)QY = {r
2
− (α2 − ρ)}[η(Y )X − η(X)Y ].

Again putting Y = ξ in (19) and using (8) and (13), we obtain

(20) QX = {r
2
− (α2 − ρ)}X + {r

2
− 3(α2 − ρ)}η(X)ξ,

which is equivalent to

(21) S(X,Y ) = {r
2
− (α2 − ρ)}g(X,Y ) + {r

2
− 3(α2 − ρ)}η(X)η(Y ).

A Lorentzian concircular structure manifold is said to be a space form if it is a
space of constant curvature. In consequence of (20) and (21), (18) reduces to
the form

R(X,Y )Z = (
r − 6(α2 − ρ)

2
){η(X)g(Y, Z)ξ − η(Y )g(X,Z)ξ + η(Y )η(Z)X

− η(X)η(Z)Y }+ (
r − 4(α2 − ρ)

2
){g(Y,Z)X − g(X,Z)Y }.(22)

From (22), it is obvious that the manifold is of constant curvature (α2 − ρ) if
and only if the scalar curvature of the manifold is 6(α2 − ρ). Thus we have:

Corollary 2.1. A LCS-manifold of dimension 3 is a space form if and only
the scalar curvature of the manifold is 6(α2 − ρ).

Remark 2.2. If we suppose that α = 1, then the (LCS)3-manifold reduces to
LP -Sasakian manifold and therefore r = 6. This result has been proved by
Shaikh and De in [36] and therefore the Corollary 2.1 is the generalization of
the Lemma 1.1 (see [36], p. 361).

3. Ricci semisymmetric (LCS)3-manifolds

In this section, we study the properties of 3-dimensional Ricci semisymmetric
Lorentzian concircular structure manifolds. It is obvious that

(23) (R(X,Y ).S)(Z,U) = −S(R(X,Y )Z,U)− S(Z,R(X,Y )U).

Let us consider R(X,Y ).S = 0 and therefore equation (23) gives

S(R(X,Y )Z,U) + S(Z,R(X,Y )U) = 0

for all X, Y , Z, U ∈ χ(M). Replacing Y by ξ in the last expression and using
(11), we obtain

(α2−ρ){η(Z)S(X,U)−g(X,Z)S(ξ, U)+S(Z,X)g(U, ξ)−g(X,U)S(Z, ξ) = 0,

which shows that

η(Z)S(X,U)− g(X,Z)S(ξ, U) + S(Z,X)g(U, ξ)− g(X,U)S(Z, ξ) = 0
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6 S. K. CHAUBEY AND A. A. SHAIKH

because α2−ρ 6= 0 (in general). In view (13), last expression assumes the form

(24) η(Z)S(X,U)+S(Z,X)η(U)−2(α2−ρ){g(X,Z)η(U)+g(X,U)η(Z)} = 0.

Let {ei, i = 1, 2, 3} be an orthonormal basis of the tangent space at any point
of the manifold M3. Setting X = U = ei in (24) and taking summation over i,
1 ≤ i ≤ 3, we get

(25) r = 6(α2 − ρ).

Thus with the help of Corollary 2.1 and equation (25), we can easily see that
the Ricci semisymmetric (LCS)3-manifold is a space form. Conversely, let us
suppose that the (LCS)3-manifold is a space form with r = 6(α2 − ρ), i.e.,

(26) R(X,Y )Z = (α2 − ρ){g(Y,Z)X − g(X,Z)Y }.
In consequence of (23) and (26), we find that R(X,Y ).S = 0. Hence we can
state the following:

Theorem 3.1. A (LCS)3-manifold is Ricci semisymmetric if and only if it is
a space form.

Also putting Z = ξ in (24) and then using (8) and (13) we obtain

(27) S(X,U) = 2(α2 − ρ)g(X,U),

provided (α2− ρ) 6= 0. From (27), it is obvious that the manifold M is an Ein-
stein manifold with scalar curvature r = 6(α2−ρ). In view of above discussions
and Theorem 3.1, we can state:

Corollary 3.2. On a 3-dimensional LCS-manifold, the following conditions
are equivalent:

(i) M is semisymmetric (R.R = 0),
(ii) M is locally symmetric,
(iii) M is of constant curvature,
(iv) M is Einstein.

In the light of (16) and (27), (1) turns into the form

(28) {2α+ 2(α2 − ρ)− λ}g(X,Y ) + 2αη(X)η(Y ) = 0.

SettingX = Y = ei in (28) for 1 ≤ i ≤ 3, where ei denotes the orthonornal basis
of the tangent space at each point of the manifold M3, and taking summation
over i, we get

λ

2
= (α+

1

3
)2 − (ρ+

1

9
).

If 1
2Lξg + S is parallel on a Ricci semisymmetric (LCS)3-manifold, then the

Ricci soliton (g, ξ, λ) will be shrinking, expanding and steady accordingly (α+
1
3 )2 >, < and = ρ+ 1

9 . Thus we have

Corollary 3.3. A Ricci soliton (g, ξ, λ) on a Ricci semisymmetric (LCS)3-
manifold together with parallel tensor 1

2Lξg + S is expanding, shrinking and

steady if (α+ 1
3 )2 <, > and = (ρ+ 1

9 ) respectively.
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ON 3-DIMENSIONAL LORENTZIAN CONCIRCULAR STRUCTURE MANIFOLDS 7

4. Locally φ-symmetric (LCS)3-manifolds

This section deals with the study of locally φ-symmetric (LCS)3-manifolds.
The covariant derivative of (22) with respect to the Levi-Civita connection ∇
along the vector field W gives

(∇WR)(X,Y )Z

=
1

2
{dr(W )− 4(2αdα(W )− dρ(W ))}{g(Y,Z)X − g(X,Z)Y }

+
1

2
{dr(W )− 6(2αdα(W )− dρ(W ))}{g(Y, Z)η(X)ξ

− g(X,Z)η(Y )ξ + η(Y )η(Z)X − η(X)η(Z)Y }

+
α

2
{r − 6(α2 − ρ)}[g(Y,Z)g(φW,φX)ξ + η(X)g(Y,Z)W(29)

+ η(X)η(W )g(Y, Z)ξ − g(X,Z)g(φW,φY )ξ − g(X,Z)η(Y )W

− g(X,Z)η(Y )η(W )ξ + g(φW,φY )η(Z)X + η(Y )g(φW,φZ)X

− g(φW,φX)η(Z)Y − g(φW,φZ)η(X)Y ].

Operating φ2 on both sides of (29) and consider that the vector fields W , X,
Y and Z are orthogonal to ξ, we have

φ2(∇WR)(X,Y )Z(30)

=
1

2
{dr(W )− 4(2αdα(W )− dρ(W ))}{g(Y,Z)X − g(X,Z)Y }.

By considering the fact ∇Xα = dα(X) = ρη(X) and dρ(X) = βη(X), equation
(30) reduces to the form

φ2(∇WR)(X,Y )Z(31)

=
1

2
{dr(W )− 4(2αρ− β))η(W )}{g(Y, Z)X − g(X,Z)Y }.

If we suppose that α is a non zero constant, then with the help of (5) and (15),
(31) becomes

(32) φ2(∇WR)(X,Y )Z =
1

2
dr(W ){g(Y, Z)X − g(X,Z)Y }.

This leads to the following:

Theorem 4.1. A 3-dimensional LCS-manifold is locally φ-symmetric if and
only if the scalar curvature of the manifold is constant.

From Theorems 3.1 and 4.1, we conclude the following:

Corollary 4.2. Every Ricci semisymmetric (LCS)3-manifold is locally sym-
metric.
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8 S. K. CHAUBEY AND A. A. SHAIKH

5. η-parallel Ricci tensor on (LCS)3-manifolds

From (8) and (21), it is obvious that

(33) S(φX, φY ) =
1

2

(
r − 2(α2 − ρ)

)
{g(X,Y ) + η(X)η(Y )}.

The covariant differentiation of (33) along the vector field Z gives

(∇ZS)(φX, φY ) =
α

2
[r − 2(α2 − ρ)]{η(X)g(φY,Z) + η(Y )g(φX,Z)

− η(X)S(φY,Z)− η(Y )S(φX,Z)}

+
1

2
{dr(Z)− 2(2αdα(Z)− dρ(Z))}g(φX, φY ).(34)

From (17) and (34), we get

α[r − 2(α2 − ρ)]{η(X)g(φY,Z) + η(Y )g(φX,Z)− η(X)S(φY,Z)

− η(Y )S(φX,Z)}+ {dr(Z)− 2(2αdα(Z)− dρ(Z))}g(φX, φY ) = 0.(35)

Setting Y = X = ei in (35) and taking summation over i, 1 ≤ i ≤ 3, where
{ei, i = 1, 2, 3} be the orthonormal basis of the tangent space at each point of
the manifold M3, we find that

(36) dr(Z) = 2(2αρ− β)η(Z).

If we suppose that α is a non-zero constant, then equation (36) becomes

(37) dr(Z) = 0⇒ r = constant.

Thus with the above discussion, we state:

Theorem 5.1. If the Ricci tensor on a (LCS)3-manifold is η-parallel, then
the scalar curvature is constant, provided α is a non-zero constant.

In consequence of Theorems 4.1 and 5.1, we conclude:

Corollary 5.2. A 3-dimensional LCS-manifold with η-parallel Ricci tensor is
locally φ-symmetric, provided α is constant.

Differentiating (21) covariantly along the vector field Z, we immediately
obtain

(∇ZS)(X,Y ) =
α

2
[r − 6(α2 − ρ)]{η(Y )g(φZ, φX) + η(X)g(φZ, φY )}

+
1

2
{dr(Z)− 2(2αdα(Z)− dρ(Z))}g(X,Y )

+
1

2
{dr(Z)− 6(2αdα(Z)− dρ(Z))}η(X)η(Y ).(38)

If we presume that α is a non-zero constant, then by the equations (37) and
(38), we can find

(∇ZS)(X,Y )(39)

=
α

2
[r − 6(α2 − ρ)]{η(Y )g(Z,X) + η(X)g(Z, Y ) + 2η(X)η(Y )η(Z)}.
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ON 3-DIMENSIONAL LORENTZIAN CONCIRCULAR STRUCTURE MANIFOLDS 9

The cyclic sum of (39) gives

(∇ZS)(X,Y ) + (∇XS)(Y,Z) + (∇Y S)(Z,X)(40)

= α[r − 6(α2 − ρ)]{η(Y )g(Z,X) + η(X)g(Z, Y ) + η(Z)g(X,Y )

+ 3η(X)η(Y )η(Z)}.

We assume that the manifold M3 is cyclic Ricci parallel, i.e. (∇ZS)(X,Y ) +
(∇XS)(Y,Z) + (∇Y S)(Z,X) = 0, then (40) becomes

α[r − 6(α2 − ρ)]{η(Y )g(Z,X) + η(X)g(Z, Y )

+ η(Z)g(X,Y ) + 3η(X)η(Y )η(Z)} = 0.

Let {ei, i = 1, 2, 3} denotes the set of orthonormal vector fields at each point of
the manifold M3. Setting X = Y = ei in above equation and taking summation
over i, 1 ≤ i ≤ 3 gives

α{r − 6(α2 − ρ)}η(Z) = 0,

which reflects that

r = 6(α2 − ρ).

Thus Corollary 2.1 and last expression state the following statement as:

Theorem 5.3. If the Ricci tensor on a (LCS)3-manifold is η-parallel as well
as cyclic parallel, then it is a space form.

Also we consider that the Ricci tensor on M3 is of Codazzi type, i.e.,

(∇ZS)(X,Y ) = (∇XS)(Z, Y ),

then from (39), we have

(41)
α

2
[r − 6(α2 − ρ)]{η(X)g(Z, Y )− η(Z)g(X,Y )} = 0,

which shows that r = 6(α2 − ρ), (α 6= 0). Thus we state:

Corollary 5.4. If the Ricci tensor of a 3-dimensional LCS-manifold is of
Codazzi type and η-parallel, then the manifold is a space form.

6. Second order parallel symmetric tensor

A symmetric tensor δ of type (0, 2) is called parallel with respect to the
Levi-Civita connection ∇ if ∇δ = 0. By considering ∇δ = 0 and the Ricci
identity ∇2

X,Y δ(Z,U)−∇2
X,Y δ(U,Z) = 0, we get

δ(R(X,Y )Z,U) + δ(Z,R(X,Y )U) = 0

for arbitrary vector fields X, Y , Z and W on (M3, g). Setting U = X = ξ in
above equation and using (3), (8) and (11), we find that

−η(Z)δ(Y, ξ) + g(Y,Z)δ(ξ, ξ) + δ(Y,Z) + η(Y )δ(ξ, Z) = 0,
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10 S. K. CHAUBEY AND A. A. SHAIKH

provided α2 − ρ 6= 0. Also replacing Z by ξ in above equation and then using
equations (3) and (8), we obtain

(42) δ(Y, ξ) = −g(Y, ξ)δ(ξ, ξ).

Covariant differentiation of (42) along the vector field X reveals that

(43) δ(Y,∇Xξ) = −g(Y,∇Xξ)δ(ξ, ξ)− 2g(Y, ξ)δ(∇Xξ, ξ).
Replacing the vector field Y with ∇XY in (42), we get

(44) g(∇XY, ξ)δ(ξ, ξ) + δ(∇XY, ξ) = 0.

In consequence of equations (43) and (44), we find that

(45) δ(Y,∇Xξ) = {2g(Y, ξ)g(∇Xξ, ξ)− g(Y,∇Xξ)}δ(ξ, ξ).
With the help of equations (2), (6), (7), (42) and (45), we can find that

(46) δ(X,Y ) = −g(X,Y )δ(ξ, ξ).

The covariant differentiation of (46) with respect to the Levi-Civita connection
∇ along any arbitrary vector field on (M3, g) together with (3), (6) and (8)
reveals that δ(ξ, ξ) is constant. Thus the equation (46) implies that the second
order symmetric parallel tensor with respect to the connection ∇ in a regular
3-dimensional LCS-manifold (M3, g) is a constant multiple of metric tensor g.
Thus we have the following:

Theorem 6.1. A Lorentzian metric on a 3-dimensional regular LCS-manifold
M3 is irreducible. In other words, the tangent bundle of M3 does not admit a
decomposition TM = E1 × E2 parallel with respect to the connection ∇ of g.

Let us suppose that the (LCS)3-manifold M3 is Ricci-symmetric, i.e., ∇S =
0 and therefore from equation (46), we get

(47) S(X,Y ) = −S(ξ, ξ)g(X,Y ),

where

S(ξ, ξ) = −2(α2 − ρ).

Thus it is clear from equation (47) that the Ricci tensor is a constant multiple
of the metric tensor g and hence the manifold is Einstein. Let {ei, i = 1, 2, 3}
be an orthonormal basis of the tangent space at each point of the manifold M3.
Setting X = Y = ei in (47) and then summing over i, 1 ≤ i ≤ 3, we find that

(48) r = 6(α2 − ρ).

Thus with the help of (39), (47), (48), Corollary 2.1 and Theorem 6.1, we state
the following corollaries:

Corollary 6.2. Every Ricci symmetric (LCS)3-manifold is an Einstein man-
ifold.

Corollary 6.3. A (LCS)3-manifold is Ricci symmetric if and only if it is space
form.
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ON 3-DIMENSIONAL LORENTZIAN CONCIRCULAR STRUCTURE MANIFOLDS 11

Let us consider that LV g is parallel and a regular (LCS)3-manifold is Ricci
symmetric, where LV g denotes the Lie derivative of g along the vector field
V . Here we have two situations regarding the vector field V : the first is that
V ∈ Span(ξ) and second V ⊥ ξ. From the analysis point of view, second
situation becomes complex and therefore we are going to consider the first case,
i.e., V = ξ. We consider δ1(X,Y ) = ( 1

2Lξg + S)(X,Y ), then from equations
(2), (8), (13), (16) and (46), we find

(49) δ1(X,Y ) = 2(α2 − ρ)g(X,Y ).

From (1) and (49), we observe that λ = 2(α2− ρ)( 6= 0). Thus the Ricci soliton
(g, ξ, λ) on a regular Ricci symmetric (LCS)3-manifold with parallel tensor
1
2Lξg is expanding and shrinking accordingly α2 − ρ < and > 0 respectively.
Hence we can state the following:

Corollary 6.4. If on a regular Ricci symmetric (LCS)3-manifold 1
2Lξg is

parallel, then the Ricci soliton (g, ξ, λ) on M3 is expanding and shrinking if α2

< and > ρ respectively.

Definition. A vector field X ∈ χ(M3) on a semi-Riemannian manifold is said
to be affine Killing vector field if ∇LXg = 0.

With the help of equation (46) and above definition, we have

(LXg)(Y,Z) = cg(Y, Z),

where c = 2g(LXξ, ξ). With the help of equation (2), (5), (13) and (15), we can
easily calculate that (LXQ)(ξ) = 0 and hence (LXS)(ξ, ξ) = 0, provided α is a
non-zero constant. Also, (LXS)(ξ, ξ) = −2S(LXξ, ξ) = −4(α2−ρ)g(LXξ, ξ) =
0 and thus g(LXξ, ξ) = 0. It is obvious that (LXg)(ξ, ξ) = −2g(LXξ, ξ) = 0
and therefore (LXg)(Y,Z) = 0. This shows that the vector field X is a Killing
vector field. Thus we have the following result:

Corollary 6.5. An affine Killing vector field on a regular (LCS)3-manifold is
Killing.

In [5], Chaki defined and studied pseudo Ricci-symmetric manifold (PRS)n.
A Riemannian manifold (Mn, g) is said to be pseudo Ricci-symmetric manifold
if S 6= 0 and satisfies

(∇XS)(Y,Z) = 2A(X)S(Y,Z) +A(Y )S(X,Z) +A(Z)S(X,Y ),

for arbitrary vector fields X, Y and Z, where A is a non-zero 1-form defined
as A(·) = g(·, P ) for associated vector field P [5]. We define:

Definition. A (LCS)3-manifold is called pseudo Ricci-symmetric manifold
(briefly (PRS)3-manifold) if S 6= 0 and satisfies

(50) (∇XS)(Y, Z) = 2A(X)S(Y, Z) +A(Y )S(X,Z) +A(Z)S(X,Y )

for arbitrary vector fields X, Y and Z.
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It may be noted that the same notion was studied by Khan et al. [43] in the
name of special Weakly Ricci-symmetric manifold. Replacing Z by ξ in (50)
and using (8) and (13), we have

(51) (∇XS)(Y, ξ) = 2(α2 − ρ){2A(X)η(Y ) +A(Y )η(X)}+A(ξ)S(X,Y ).

It is obvious that

(∇XS)(Y, ξ) = ∇XS(Y, ξ)− S(∇XY, ξ)− S(Y,∇Xξ),
which becomes

(52) (∇XS)(Y, ξ) = 2[(2αρ− β)η(X)η(Y ) + α(α2 − ρ)g(X,Y )]− αS(X,Y ),

by considering the equations (3), (4), (8) and (13). In view of (51) and (52),
we get

S(X,Y ) =
2

α+A(ξ)
{(2αρ− β)η(X)η(Y ) + α(α2 − ρ)g(X,Y )

− (α2 − ρ)[2A(X)η(Y ) +A(Y )η(X)]},(53)

provided α+A(ξ) 6= 0. Let us define

δ1(X,Y ) =
1

2
(Lξg)(X,Y ) + S(X,Y ).

By virtue of (16), (53) and above definition, we acquire

δ1(X,Y ) =
2

α+A(ξ)
{(2αρ− β)η(X)η(Y ) + α(α2 − ρ)g(X,Y )

− (α2 − ρ)[2A(X)η(Y ) +A(Y )η(X)]}+ αg(φX, φY ).(54)

Changing X and Y with ξ in (54), we procure

(55) δ1(ξ, ξ) =
2

α+A(ξ)
[−α(α2 − 3ρ) + 3(α2 − ρ)A(ξ)− β].

From equations (1) and (55), it is clear that

λ = −δ1(ξ, ξ),

and hence we can state:

Theorem 6.6. If α2 − ρ 6= 0 and 1
2Lξg+ S is parallel on a pseudo Ricci sym-

metric (LCS)3-manifold, then the Ricci soliton (g, ξ, λ) is shrinking, expanding

and steady if β+α(α2−3ρ)−3(α2−ρ)A(ξ)
α+A(ξ) >, < and = 0 respectively.

In particular, if λ is a non-vanishing constant, then from (1), (5), (15), (55)
and Theorem 6.6, we find that

λ =
2

α+A(ξ)
α2(α− 3A(ξ)).

It is evident from the above expression that the Ricci soliton (g, ξ, λ) is shrink-

ing, expanding and steady accordingly 4A(ξ)
α+A(ξ) <, > and = 1 respectively. Thus

we conclude the following:
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Corollary 6.7. If α is non-vanishing constant and 1
2Lξg + S is parallel on

a pseudo Ricci symmetric (LCS)3-manifold, then the Ricci soliton (g, ξ, λ) is

expanding, shrinking and steady accordingly 4A(ξ)
α+A(ξ) >, < and = 1 respectively.

7. Second order parallel skew-symmetric tensor

In this section, we study the properties of second order parallel skew-sym-
metric tensor with respect to a Levi-Civita connection ∇ in a regular 3-dimen-
sional LCS-manifold. Let us suppose that δ is a second order skew symmetric
parallel tensor, i.e., δ(X,Y ) = −δ(Y,X) and ∇δ = 0. By considering ∇δ = 0
and the Ricci identity ∇2

W,Xδ(Y,Z)−∇2
W,Xδ(Z, Y ) = 0, we get

δ(R(W,X)Y,Z) + δ(Y,R(W,X)Z) = 0

for arbitrary vector fields X, Y , Z and W on (M3, g). Setting W = Y = ξ in
above equation and using (3), (8) and (11), we obtain

(56) δ(X,Z) = η(Z)δ(ξ,X)− η(X)δ(ξ, Z).

Let A1 be an (1, 1) tensor field which is metrically equivalent to δ, i.e.,

(57) δ(X,Y ) = g(A1X,Y ).

From equations (56) and (57), we conclude that

(58) A1X = −η(X)A1ξ + g(A1ξ,X)ξ.

Since δ is parallel and therefore A1 is parallel and thus

(59) ∇X(A1ξ) = αg(A1ξ,X)ξ.

In view of (2) and (58), we have

(60) g(A1X, ξ) = −η(X)g(A1ξ, ξ)− g(A1ξ,X).

Putting X = ξ in (60), we obtain

g(A1ξ, ξ) = 0.

It is obvious from the above discussion that

g(∇X(A1ξ), A1ξ) = 0,

which reflects that ||A1ξ|| = constant on M3. It is also reveals from above
equations that

(61) A2
1ξ = −||A1ξ||2ξ.

Differentiating (61) covariantly with respect to the Levi-Civita connection ∇
along the vector field X and then using the equations (6), (7) and (8), we find
that

(62) A2
1X = −||A1ξ||2X.

Now if ||A1ξ||2 6= 0, then J = 1
||A1ξ||A1 is an almost complex structure on M .

Indeed, (J, g) is a Kähler structure on M . Thus the fundamental 2-form is
g(JX, Y ) = λδ(X,Y ) with λ = 1

||A1ξ|| = constant. But δ satisfies the relation
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(56) and thus it is degenerate, which is a contradiction. Therefore ||A1ξ|| = 0
and hence δ = 0 on M3. Thus we state:

Theorem 7.1. There doesn’t exist a second order skew-symmetric parallel ten-
sor field δ on a regular (LCS)3-manifold.

8. Three dimensional LCS-manifolds admitting a non-null
concircular vector field

A non vanishing vector field V on a 3-dimensional LCS-manifold M3 is said
to be a concircular vector field if

(63) ∇XV = σX, ∀X ∈ χ(M3)

and σ is a scalar function. In particular, if σ = 0, then the vector field V is
parallel. It is obvious from (63) that

∇Y∇XV = σ∇YX + (∇Y σ)X,

which gives

(64) ′R(X,Y, V, Z) = dσ(X)g(Y,Z)− dσ(Y )g(X,Z),

where ′R(X,Y, V, Z) = g(R(X,Y )V,Z). Putting Z = ξ in (64) and using (3)
and (9), we have

(65) (α2 − ρ){η(X)g(Y, V )− η(Y )g(X,V )} = η(Y )dσ(X)− η(X)dσ(Y ).

Setting X = φX and Y = ξ in (65), we find

(66) dσ(X) + η(X)dσ(ξ) = −(α2 − ρ){g(X,V ) + η(X)g(ξ, V )}.
If we suppose that g(X,V ) = 0, then g(V, V ) = 0 and therefore ||V ||2 = 0.
This shows that V is a null vector field which contradicts our supposition.
Thus g(X,V ) 6= 0 and therefore equation (64) yields

(67) dσ(X)g(Y, V ) = dσ(Y )g(X,V ).

Replacing the vector field Y with ξ in (67), we have

(68) dσ(X)η(V ) = dσ(ξ)g(X,V ).

Since the vector field X is not orthogonal to the structure vector field ξ, (in
general), therefore (68) takes the form

(69) dσ(X)η(V )η(X) = dσ(ξ)g(X,V )η(X).

In consequence of (66), (67) and (69), we obtain

(70) {g(X,V ) + η(X)η(V )}{dσ(X) + (α2 − ρ)g(X,V )} = 0,

which reveals that either

(i) g(X,V ) + η(X)η(V ) = 0,

or,

(ii) dσ(X) + (α2 − ρ)g(X,V ) = 0.
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If we suppose that g(X,V ) + η(X)η(V ) 6= 0, then with the help of (64) and
(ii), we conclude that

(71) ′R(X,Y, V, Z) = (α2 − ρ){g(X,Z)g(Y, V )− g(Y,Z)g(X,V )}.

By setting X = Z = ei in (71), where {ei, i = 1, 2, 3} denotes the set of
orthonormal vector field at each point of the manifold, and taking summation
over i, 1 ≤ i ≤ 3, we conclude

(72) S(Y, V ) = 2(α2 − ρ)g(Y, V ),∀Y ∈ χ(M3).

With the help of equations (21) and (72), we observe that

{r − 6(α2 − ρ)}[g(Y, V ) + η(Y )η(V )] = 0,

which shows that r = 6(α2 − ρ). On the other hand, if we suppose that
g(X,V ) + η(X)η(V ) = 0 and dσ(X) + (α2 − ρ)g(X,V ) 6= 0. Taking covariant
derivative of (i) along the vector field Y , we get

(73) (∇Y η)(X)η(V ) + (∇Y η)(V )η(X) = 0.

In view of (4), (73) gives us only one possibility that V ⊥ ξ. Thus we state:

Theorem 8.1. A 3-dimensional LCS-manifold equipped with a non null con-
circular vector field which is not orthogonal to ξ is a space form.
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