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DISTRIBUTIONAL FRACTIONAL POWERS

OF SIMILAR OPERATORS WITH APPLICATIONS

TO THE BESSEL OPERATORS

Sandra Mónica Molina

Abstract. This paper provides a method to study the nonnegativity of
certain linear operators, from other operators with similar spectral prop-

erties. If these new operators are formally self-adjoint and nonnegative,

we can study the complex powers using an appropriate locally convex
space. In this case, the initial operator also will be nonnegative and

we will be able to study its powers. In particular, we have applied this
method to Bessel-type operators.

1. Introduction

Operators of Bessel type appear in the literature related with different ver-
sions of Hankel transform (see [1, 3, 4, 11]). We are going to consider Bessel
operators on R+ = (0,∞) given by

(1) ∆µ =
d2

dx2
+ (2µ+ 1)(x−1 d

dx
) = x−2µ−1 d

dx
x2µ+1 d

dx
and

(2) Sµ =
d2

dx2
− 4µ2 − 1

4x2
= x−µ−

1
2
d

dx
x2µ+1 d

dx
x−µ−

1
2 ,

which are related through

Sµ = xµ+ 1
2 ∆µx

−µ− 1
2 .

This feature has inspired us to develop a method to study its fractional powers
based in a concept of similar operator. Similar operators have the same spectral
properties and also that of being nonnegative if one of them has this property.
This method will be applied in the contexts of Banach spaces and locally convex
spaces as follows: Let X and Y be Banach spaces. Suppose that we have an
isometric isomorphism T : X → Y and let T−1 : Y → X be its inverse. Let A
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2 S. M. MOLINA

be a linear operator A : D(A) ⊂ X → X. Then we can consider the operator
B = TAT−1, B : D(B) ⊂ Y → Y with domain D(B) = {x ∈ Y : T−1x ∈
D(A)} given by

(3) B = TAT−1.

Under these conditions we will say that A and B are similar. If A and B are
similar operators, then

(zId−B)−1 = T (zId−A)−1T−1

for a complex number z, and we deduce immediately that A is a nonnegative
operator if and only if so is B.

If A is a nonnegative operator, then for α ∈ C such that Reα > 0, n > Reα,
n ∈ N, and φ ∈ D(An), the Balakrisnahn operator associated with A, can be
represented by

JαAφ =
Γ(m)

Γ(α)Γ(m− α)

∫ ∞
0

λα−1[A(λ+A)−1]mφ dλ,

(see [5, Proposition 3.1.3, p. 59]).
If A is bounded, JαA can be considered as the fractional power of A, and

in another case we can consider the following representation for the fractional
power (see [5, Theorem 5.2.1, p. 114]),

Aα = (A+ λ)nJαA(A+ λ)−n,

with α, n as above and λ ∈ ρ(−A).
When two operators are similar, the fractional powers also meet this prop-

erty. Thus, we have the following result:

Proposition 1.1. Let A and B be similar nonnegative operators. If α ∈ C
such that Re α > 0, then

(4) JαB = TJαAT
−1,

and

(5) Bα = TAαT−1,

where T is the isometric isomorphism that verifies B = TAT−1.

The Bessel operator (1) appears when one considers the Laplacian operator
in polar coordinates for radial functions. In [2], the regularity of solutions to
fractional nonlocal Bessel equation given by

(−∆µ)αu = f,

is studied in R+. In this paper, the fractional Bessel operator (−∆µ)α consid-
ered in the above formula is defined by

(6) (−∆µ)αu = Hµ(x2αHµu),
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DISTRIBUTIONAL FRACTIONAL POWERS OF SIMILAR OPERATORS 3

where Hµ is the Hankel transform given by (39) (see Appendix). In [7], we
obtained the following representation in L2(Rn+) for fractional powers of Bessel
operator (2)

(7) (−Sµ)αu = hµ(|x|2αhµu),

where hµ is the Hankel transform given by (18) and is related to Hµ through

hµ(φ)(y) = yµ+ 1
2Hµ(x−µ−

1
2φ)(y). Note that the equality (6) in L2(Rn+), can

be obtained from (7) using the last equality, similarity of operators Sµ and ∆µ

and Proposition 1.1.
In order to apply the method described above for similar operators to Bessel

operators (1) and (2), we study the nonnegativity of Bessel operator (2) in
weighted Lp-spaces, for n = 1. Let Lp(R+, sr

p) for 1 ≤ p <∞ and L∞(R+, r)
be the Lebesgue spaces with the norms

‖f‖Lp(R+,srp) =

[∫ ∞
0

|f(x)|p s(x)rp(x)dx

]1/p

,

and

‖f‖L∞(R+,r)
= ‖rf‖∞ .

respectively, and s and r given by

(8) s = x2µ+1/cµ,

(9) r = x−µ−
1
2

with cµ = 2µΓ(µ+ 1). For p = 2, the Lp(R+, sr
p) coincides with L2(R+).

We will denote by Sµ,p the part of Sµ in Lp(R+, sr
p); namely, the operator

Sµ with domain

D (Sµ,p) = {f ∈ Lp(R+, sr
p) : Sµf ∈ Lp(R+, sr

p)}

and given by Sµ,pf = Sµf.
Analogously, by Sµ,∞ we will denote the part of Sµ in L∞(R+, r); namely,

the operator Sµ with domain

D (Sµ,∞) = {f ∈ L∞(R+, r) : Sµf ∈ L∞(R+, r)}

and Sµ,∞f = Sµf . Under these conditions we obtained the following result:

Theorem 1.2. Given µ > − 1
2 . Then

(1) The operators Sµ,p and Sµ,∞ are closed.
(2) The operators −Sµ,p and −Sµ,∞ are nonnegative.

Moreover, another feature of operators Sµ and ∆µ is that one of them is
formally self-adjoint (considering the inner product in the usual L2(R+)), and
the other is not. In order to define the complex powers of a differential operator
in distributional spaces is important that this operator be formally self-adjoint.
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4 S. M. MOLINA

It would therefore be interesting to obtain an operator similar and formally self-
adjoint from a given initial operator. In this case Sµ is formally self-adjoint,
and we obtain the following duality formula

((−(Sµ))αT, φ) = (T, (−(Sµ))αφ), (φ ∈ B, T ∈ B′),
where B is a suitable locally convex space and B′ is its corresponding strong dual
defined in Sections 5 and 6. In Theorem 5.5 we established the nonnegativity
of −(Sµ) in B from where we infer immediately the nonnegativity of −(Sµ) in
B′.

In Section 2 we will review some of the standard facts about Hankel trans-
forms, convolution and Bessel operators in distributional and Lebesgue spaces,
which are fundamental to establish the nonnegativity of Bessel operator. In
Section 3 we will provide the proof of Proposition 1.1. Moreover, we will extend
this idea to locally convex spaces and apply these ideas to the Bessel operators.

In Section 4 we will establish a series of lemmas which will be used in the
proof of Theorem 1.2. In Sections 5 and 6 we will establish the nonnegativity
of Sµ in a suitable locally convex space and in its dual space.

For the convenience of the reader, we have added an Appendix with the
proofs of some results about the theory related with Hankel transform, thus
making our exposition self-contained.

2. Some preliminaries on Hankel transform and convolution

In this section we introduce the distributional spaces necessary for our pur-
poses.

By D(R+) we denote the space of functions in C∞(R+) with compact sup-
port in R+ and with the usual topology, and by D′(R+) the space of classical
distributions in R+.

Throughout this paper we assume µ > − 1
2 . We will consider the Hankel

transform defined in a suitable functional space denoted by Hµ and given by

Hµ =

{
φ ∈ C∞(R+) : sup

x∈R+

∣∣∣xm(x−1D)kx−µ−
1
2φ(x)

∣∣∣ <∞ : m, k = 0, 1, 2, . . .

}

endowed with the family of seminorms
{
γµm,k

}
, given by

(10) γµm,k(φ) = sup
x∈R+

∣∣∣xm(x−1D)kx−µ−
1
2φ(x)

∣∣∣ ,
Hµ is a Fréchet space (see [11, Lemma 5.2-2, p. 131]).

Now we consider the weighted Lebesgue spaces Lp(R+, sr
p) with 1 ≤ p <∞

and L∞(R+, r) given in the Introduction. We have the following lemma:

Lemma 2.1. It holds that

(11) Hµ ⊂ L1(R+, sr) ∩ L∞(R+, r) ⊂ Lp(R+, sr
p), 1 ≤ p <∞,

with s and r given by (8) and (9).
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DISTRIBUTIONAL FRACTIONAL POWERS OF SIMILAR OPERATORS 5

Proof. The inclusion Hµ ⊂ L∞(R+, r) is immediate and also

(12) ‖φ‖L∞(R+,r)
= γµ0,0(φ), φ ∈ Hµ.

It also verifies that Hµ ⊂ L1(R+, sr) as∫ ∞
0

|φ| sr dx =

∫ 1

0

|x−µ− 1
2φ|x2µ+1c−1

µ dx+

∫ ∞
1

xm|x−µ− 1
2φ|x−m+2µ+1c−1

µ dx

<∞
if m > 2µ+ 2, and

(13) ‖φ‖L1(R+,sr) ≤ C{γ
µ
0,0(φ) + γµm,0(φ)}, φ ∈ Hµ.

It also verifies that

(14)

‖φ‖Lp(R+,srp) =
{∫ ∞

0

|φ|p−1rp−1|φ|rs
} 1
p

≤
{
‖φ‖L∞(R+,r)

} p−1
p
{
‖φ‖L1(R+,sr)

} 1
p

and by (12) and (13) we can consider a constant C ′ such that

(15) ‖φ‖L∞(R+,r)
≤ C ′

[
γµ0,0(φ) + γµm,0(φ)

]
, φ ∈ Hµ,

(16) ‖φ‖L1(R+,sr)
≤ C ′

[
γµ0,0(φ) + γµm,0(φ)

]
, φ ∈ Hµ

and by (14), (15) and (16) we finally conclude that

(17) ‖φ‖Lp(R+,srp) ≤ C
′ [γµ0,0(φ) + γµm,0(φ)

]
, φ ∈ Hµ. �

If Jµ denote the Bessel function of first kind and order µ, we consider the
Hankel transform hµ given by

(18) hµφ(x) =

∫ ∞
0

√
xyJµ(xy)φ(y)dy

for φ ∈ Hµ.

Remark 2.2. If φ ∈ L1(R+, sr), then Hankel transform hµφ is well defined
because the kernel (xy)−µJµ(xy) is bounded if µ > − 1

2 (see [10, (1), p. 49]).
By Lemma 2.1, hµφ is well defined for all φ ∈ Hµ and is an automorphism of
Hµ(see [11, Theorem 5.4-1, p. 141]).

The space of the continuous linear functions T : Hµ → C is denoted by H′µ.

We call a function f ∈ L1
loc(R+) a regular element of H′µ if the application

Tf ∈ H′µ, where Tf (φ) =
∫∞

0
fφ, φ ∈ Hµ.

Remark 2.3. Given T ∈ H′µ, we can consider the restriction of T to D(R+)
as a member of D′(R+), because convergence in D(R+) implies convergence in
Hµ. But D(R+) is not dense in Hµ (see [11]), consequently the behavior of an
element u ∈ H′µ over D(R+) not determines univocally the behavior of u as
element of H′µ. If a locally integrable function f defines a regular element of
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6 S. M. MOLINA

H′µ and Tf ∣∣D(R+)
= 0, then f = 0, a.e. in R+. So, regular distributions in H′µ

are included in injective way in D′(R+).

Lemma 2.4. Suppose that 1≤ p<∞. A function in Lp(R+, sr
p) or L∞(R+, r)

is a regular element of H′µ. In particular, the functions in Hµ can be considered
as regular elements of H′µ.

Proof. Let f ∈ L∞(R+, r) and φ ∈ Hµ. Since

Hµ ⊂ L1(R+, sr) = L1(R+, r
−1/cµ),

then φ ∈ L1(R+, r
−1) and (Tf , φ) =

∫∞
0
fφ is well defined. So, by (13)

|(Tf , φ)| ≤ ‖f‖L∞(R+,r)
‖φ‖L1(R+,r−1) = cµ ‖f‖L∞(R+,r)

‖φ‖L1(R+,sr)

≤ Ccµ ‖f‖L∞(R+,r)

[
γµ0,0(φ) + γµm,0(φ)

]
.

Consequently, f is a regular element of H′µ.
Now, let f ∈ Lp(R+, sr

p) with 1 ≤ p <∞ and φ ∈ Hµ, then

(19) |(Tf , φ)| ≤
∫ ∞

0

|fφ| =
∫ ∞

0

(r |f |)
(
s−1r−1 |φ|

)
s =

∫ ∞
0

(r |f |) (cµr |φ|) s.

Since r |f | ∈ Lp(R+, s) and r |φ| ∈ Lq(R+, s), being q the conjugate of p, by
Hölder inequality and (17) we obtain that

|(Tf , φ)| ≤ cµ ‖f‖Lp(R+,srp) ‖φ‖Lq(R+,srq)

≤ Ccµ ‖f‖Lp(R+,srp)

[
γµ0,0(φ) + γµm,0(φ)

]
with m a positive integer m > 2µ+ 2. So, f is a regular element of H′µ. �

Given f, g defined in R+, the Hankel convolution f]g is defined formally by

(20) (f]g) (x) =

∫ ∞
0

∫ ∞
0

Dµ(x, y, z)f(y)g(z) dydz,

where, for every x, y, z ∈ R+, Dµ(x, y, z) is given by
(21)

Dµ(x, y, z)=

{
2µ−1(xyz)−µ+

1
2

Γ(µ+ 1
2 )
√
π

(A(x, y, z))2µ−1 if |x− y| < z < x+ y

0 if 0 < z < |x− y| or z > x+ y.

A(x, y, z) is the measure of area of the triangle with sides x, y, z ∈ R+. Note
that |x− y| < z < x+ y is the condition for such a triangle to exist, and in this

case A(x, y, z) = 1
4

√
[(x+ y)2 − z2][z2 − (x− y)2].

The two following lemmas arise from adapting the classical result of [3] to
this context.

Lemma 2.5. Let f ∈ L1(R+, sr).

(1) If g ∈ L∞(R+, r), then the convolution f]g(x) exists for every x ∈ R+,
and f]g ∈ L∞(R+, r) with

(22) ‖f]g‖L∞(R+,r)
≤ ‖f‖L1(R+,sr)

‖g‖L∞(R+,r)
.
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DISTRIBUTIONAL FRACTIONAL POWERS OF SIMILAR OPERATORS 7

(2) If g ∈ Lp(R+, sr
p) (1 ≤ p <∞), then the convolution f]g(x) exists for

a.e. x ∈ R+, and f]g ∈ Lp(R+, sr
p) with

(23) ‖f]g‖Lp(R+,srp) ≤ ‖f‖L1(R+,sr)
‖g‖Lp(R+,srp) .

Lemma 2.6. Let f, g ∈ L1(R+, sr). Then

(24) hµ (f]g) = rhµ(f)hµ(g).

The following lemma may be found dispersed in different classical papers of
Hankel transforms, for which we consider it convenient to add a prove in the
Appendix.

Lemma 2.7. Let {φn} ⊂ L1(R+, rs) such that

(1) φn ≥ 0 in R+,
(2)

∫∞
0
φn(x)r(x)s(x) dx = 1 for all n,

(3) For δ > 0, limn→∞
∫∞
δ
φn(x)r(x)s(x) dx = 0.

Let f ∈ L∞(R+, r) and continuous in x0 ∈ R+. Then limn→∞ f]φn(x0) =
f(x0). Further, if rf is uniformly continuous in R+, then limn→∞ ‖f]φn(x)−
f(x)‖L∞(R+,r) = 0

2.1. The Bessel operator Sµ

In this section we summarize some elementary properties of Sµ on the spaces
Hµ and H′µ. For most of the proofs we refer the reader to [11].

Lemma 2.8. (1) The operator Sµ : Hµ −→ Hµ is continuous.
(2) If λ ≥ 0, the operator

Hµ −→ Hµ
φ −→ (λ+ x2)φ

is continuous.
(3) If λ > 0, the operator

Hµ −→ Hµ
φ −→ (λ+ x2)−1φ

is continuous.

Lemma 2.9. Let φ ∈ Hµ. Then

(1) hµSµφ = −y2 (hµφ).
(2) Sµhµφ = hµ(−x2φ).

Lemma 2.10. The following continuous operators in Hµ can be extended to
H′µ in the following way:

(1) The Hankel transform hµ

(hµu, φ) = (u, hµφ), u ∈ H′µ, φ ∈ Hµ,

and hµ : H′µ → H′µ is a bijective mapping.
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8 S. M. MOLINA

(2) The differential operator Sµ

(Sµu, φ) = (u, Sµφ), u ∈ H′µ, φ ∈ Hµ.

(3) The product by (λ+ x2) for λ ≥ 0

((λ+ x2)u, φ) = (u, (λ+ x2)φ), u ∈ H′µ, φ ∈ Hµ.

(4) The product by (λ+ x2)−1 for λ > 0

((λ+ x2)−1u, φ) = (u, (λ+ x2)−1φ), u ∈ H′µ, φ ∈ Hµ.

Lemma 2.11. If u ∈ H′µ, then

(1) hµSµu = −x2hµu.
(2) Sµhµu = hµ(−y2u).

Lemma 2.12. The following equalities are valid in Hµ and H′µ for n = 1, 2, . . . ,
λ ∈ C

(1) (−Sµ + λ)nhµ = hµ(y2 + λ)n.
Moreover if λ > 0,

(2) hµ(−Sµ + λ)−n = (y2 + λ)−nhµ.
(3) hµ(−Sµ(−Sµ + λ)−1)n = y2n(y2 + λ)−nhµ.

Proof. (1) is immediate consequence of item (2) of Lemma 2.11.
Since (y2 + λ) and (y2 + λ)−1 are multipliers in Hµ and H′µ, (Lemma 2.8),

then hµ(y2 + λ)−1hµ is inverse operator of −Sµ + λ. Thus, (2) is obtained by
a simple application of Proposition 7.2 (see Appendix) and induction over n.

Equality (3) follows immediately by item (2) of Lemma 2.11 and induction
over n. �

3. Similar operators and nonnegativity

In this section we include a brief review of nonnegative operators in Banach
spaces and in locally convex spaces.

Let X be a Banach space (real or complex). Let A be a closed linear operator
A : D(A) ⊂ X → X and ρ(A) the resolvent set of A. We say that A is
nonnegative if (−∞, 0) ⊂ ρ(A) and

sup
λ∈R+

{‖λ(λ+A)−1‖} <∞.

Now, we will give the definition of nonnegative operator in the context of
locally convex spaces. Let X be a locally convex space with a Hausdorff topol-
ogy generated by a directed family of seminorms {‖ ‖α}α∈Λ. A family of linear
operators {Aλ}λ∈Γ, Aλ : D(Aλ) ⊂ X → X, is equicontinuous if for each α ∈ Λ
there are β = β(α) ∈ Λ and a constant C = Cα ≥ 0 such that for all λ ∈ Γ

‖Aλφ‖α ≤ C‖φ‖β , φ ∈ X.
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DISTRIBUTIONAL FRACTIONAL POWERS OF SIMILAR OPERATORS 9

Under the above conditions, we say that a closed linear operator A : D(A) ⊂
X → X is nonnegative if (−∞, 0) ⊂ ρ(A) and the family of operators

{λ(λ+A)−1}λ∈R+

is equicontinuous.
With the same notation as the Introduction, let A and B be similar opera-

tors, i.e.,
B = TAT−1

with T an isometric isomorphism T : X → Y and A : D(A) ⊂ X → X
B = TAT−1, B : D(B) ⊂ Y → Y and X, Y Banach spaces. In this section we
prove Proposition 1.1.

Proof of Proposition 1.1. Let α ∈ C such that Re α > 0 and n ∈ N, n > Re α.
We observe that if B = TAT−1, then Bn = TAnT−1 and

D(TJαAT
−1) = {x ∈ Y : T−1x ∈ D(JαA)} = {x ∈ Y : T−1x ∈ D(An)}

= D(Bn) = D(JαB),

and (4) is immediate from properties of Bochner integral. In (5) the equality
of domains is evident and

Bα = (B + λ)nJαB(B + λ)−n = (TAT−1 + λ)nTJαAT
−1(TAT−1 + λ)−n

= T (A+ λ)nT−1TJαAT
−1T (A+ λ)−nT−1 = TAαT−1. �

In the same way as for Banach spaces, one can consider similar operators in
locally convex spaces, i.e., given A : D(A) ⊂ X → X and B : D(B) ⊂ Y → Y
linear operators in the locally convex spaces X and Y , and

B = TAT−1,

with T : X → Y an isomorphism of locally convex spaces, then A and B are
similar operators. In this case we obtain again the nonnegativity of B from
that of A and Theorem 1.1 can be easily extended to the case of nonnegative
operators in locally convex spaces.

3.1. Applications to Bessel operator

Given µ > − 1
2 , we consider the differential operator ∆µ given by (1) in R+.

We are now going to apply the observations considered in the previous sec-
tion to the operator ∆µ. First, we calculate the Sturm-Liouville form of ∆µ,
thereby obtaining the operator

Tµ = x2µ+1∆µ

which is formally self-adjoint (in the same sense as in Section 1). Operators of
type fTµf , with f ∈ C∞(R+), are still formally self-adjoint. If we want the
new operator to be similar to ∆µ, namely type r−1∆µr, we have to consider

r = x−µ−
1
2 . Thus the operator

(25) Sµ = xµ+ 1
2 ∆µ x

−µ− 1
2
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10 S. M. MOLINA

is formally self-adjoint and similar to ∆µ and hence with the same spectral
properties.

Since mappings Lr : Lp(R+, r
ps) → Lp(R+, s) with 1 ≤ p < ∞ (or Lr :

L∞(R+, r)→ L∞(R+)) given by Lr(f) = rf are isometric isomorphisms, if we
consider the part of the distributional operator ∆µ in the spaces Lp(R+, s) (or
L∞(R+)), i.e., the operator with domain

D((∆µ)Lp(R+,s)) = {f ∈ Lp(R+, s) : ∆µf ∈ Lp(R+, s)} ,

and given by (∆µ)Lp(R+,s)f = ∆µf . Then, applying the ideas developed in the
previous section, it is enough to study the operator Sµ in the spaces Lp(R+, sr

p)
(or L∞(R+, r)).

4. Fractional powers of Sµ in Lebesgue spaces

In this section we will prove Theorem 1.2 enunciated in the Introduction.
This theorem establish the nonnegativity of the parts in Lp(R+, sr

p) and in
L∞(R+, r) of distributional differential operator Sµ given by (2).

Let 1 ≤ p < ∞. We will denote by Sµ,p the part of Sµ in Lp(R+, sr
p); i.e.,

the operator Sµ with domain

D (Sµ,p) = {f ∈ Lp(R+, sr
p) : Sµf ∈ Lp(R+, sr

p)}

and given by Sµ,pf = Sµf.
Analogously, by Sµ,∞ we will denote the part of Sµ in L∞(R+, r); namely,

the operator Sµ with domain

D (Sµ,∞) = {f ∈ L∞(R+, r) : Sµf ∈ L∞(R+, r)}

and Sµ,∞f = Sµf.
In order to study the nonnegativity of operators −Sµ,∞ and −Sµ,p we con-

sider the following function:

(26) Kν(x) =
1

2

(1

2
x
)ν ∫ ∞

0

e−t−
x2

4t
dt

tν+1

for x ∈ R+. Since for ν < 0∫ ∞
0

e−t−
x2

4t t−ν−1 dt ≤
∫ ∞

0

e−tt−ν−1 dt <∞

and for ν ≥ 0 the function e−t−
x2

4t t−ν−1 is bounded in a neighborhood of zero,
Kν is well defined for ν ∈ R and Kν > 0.

Remark 4.1. For noninteger values of ν, Kν (see [10, (15), p. 183]), coincides
with the Macdonald’s function Kν (see [10, (6) and (7), p. 78]) given by

Kν(x) =
π

2

I−ν(x)− Iν(x)

sin νπ
x ∈ R+,
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DISTRIBUTIONAL FRACTIONAL POWERS OF SIMILAR OPERATORS 11

with Iυ is the modified Bessel function over R+ (see [10, (2), p. 77]). For
integers values of ν, Kν is defined by

Kn(x) = lim
ν→n

Kν(x), x ∈ R+.

Now, given λ > 0, we consider the function

Nλ(x) = λ
µ
2 x

1
2Kµ(

√
λ x), x ∈ R+.

The following lemmas describe properties of the kernel Nλ which are crucial
for the study of the nonnegativity of Bessel operator (for proofs see Appendix).

Lemma 4.2. Given µ > − 1
2 and λ > 0. Then

a) Nλ ∈ L1(R+, sr) = L1(R+,
r−1

cµ
) and

‖Nλ‖L1(R+,sr)
=

1

λ
.

b)

hµNλ(y) =
yµ+ 1

2

λ+ y2
.

Lemma 4.3. Let 1 ≤ p < ∞. If f ∈ Lp(R+, sr
p) or L∞(R+, r). Then the

following equality holds on H′µ

(27) hµ(Nλ]f) =
1

λ+ y2
hµ(f).

Now, we can prove Theorem 1.2:

Proof of Theorem 1.2. (1) Let {fn}∞n=1 ⊂ D (Sµ,∞) such that

lim
n→∞

fn = f and lim
n→∞

Sµ,∞fn = g

in L∞(R+, r). Since convergence in L∞(R+, r) implies convergence in D′(R+),
then given φ ∈ D(R+)

(Sµf, φ) = (f, Sµφ) = lim
n→∞

(fn, Sµφ) = lim
n→∞

(Sµfn, φ) = (g, φ),

so, Sµf = g and Sµ,∞ is closed. The case of Sµ,p is similar.
(2) Let λ > 0 and f ∈ D (Sµ,∞) such that

(
λ − Sµ,∞

)
f = 0. Then

(λ− Sµ,∞) f ∈ L∞(R+, r) and is null as regular element of H′µ, so

hµ
(
λ− Sµ,∞f

)
= 0

in H′µ. By Lemma 2.11, we obtain that

(λ+ y2)hµf = 0

in H′µ, and hence by Lemma 2.10

hµf = (λ+ y2)−1(λ+ y2)hµf = 0.
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12 S. M. MOLINA

Then, f = 0 as element of H′µ and by Remark 2.3 we conclude that f = 0 a.e.
in (0,∞) and, λ − Sµ,∞ is injective. Now, let f ∈ L∞(R+, r) and g = Nλ] f .
Then, by Lemma 2.5, g ∈ L∞(R+, r) and

hµ
(
(λ− Sµ,∞) g

)
= (λ+ y2) hµg = (λ+ y2) hµ(Nλ] f) = hµf.

By injectivity of Hankel transform in H′µ we obtain that

(λ− Sµ,∞) g = f,

so, λ− Sµ,∞ is onto. Also,∥∥∥(λ− Sµ,∞)
−1
f
∥∥∥
L∞(R+,r)

= ‖g‖L∞(R+,r)
= ‖Nλ]f ‖L∞(R+,r)

≤ ‖Nλ‖L1(R+,rs)
‖f ‖L∞(R+,r)

=
1

λ
‖f ‖L∞(R+,r)

hence−Sµ,∞ is nonnegative. The proof of nonnegativity of−Sµ,p is similar. �

Remark 4.4. In [7], the result of theorem above has been obtained for the
particular case p = 2 and in Rn+.

Now, in view of nonnegativity of −Sµ,∞ and −Sµ,p we can consider the
complex fractional powers. If α ∈ C, Re α > 0 and n > Re α, then the
fractional power of −Sµ,∞ can be represented by:

(−Sµ,∞)α = (−Sµ,∞ + 1)nJ α∞(−Sµ,∞ + 1)−n

(see [5, (5.20), p. 114]), where with J α∞ we denote the Balakrishnan operator
associated to −Sµ,∞ given by:

J α∞φ =
Γ(n)

Γ(α)Γ(n− α)

∫ ∞
0

λα−1
[
−Sµ,∞(λ− Sµ,∞)−1

]n
φ dλ

for α and n in the previous conditions and φ ∈ D((−Sµ,∞)n) (see [5, (3.4),
p. 59]). The case of (−Sµ,p)α is analogous.

5. Nonnegativity of Bessel operator Sµ in the space B

In order to study non-negativity of Bessel operator in a locally convex space,
we begin with the following observation:

Remark 5.1. The continuous operator −Sµ : Hµ → Hµ is not nonnegative.

Indeed, if we suppose that −Sµ is nonnegative in Hµ, by the continuity of
−Sµ in Hµ, given α ∈ C, 0 < α < 1 and according to [5, Chapter 5, p. 105 and
134]), we have that fractional power (−Sµ)α would be given by

(28) (−Sµ)αφ =
sinαπ

π

∫ ∞
0

λα−1(−Sµ)(λ− Sµ)−1φ dλ

and D((−Sµ)α) = D(−Sµ) = Hµ. Applying the Hankel transform in (28) we
obtain

hµ

(
(−Sµ)αφ

)
(y) =

sinαπ

π

∫ ∞
0

λα−1hµ

(
(−Sµ)(λ− Sµ)−1φ

)
dλ
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DISTRIBUTIONAL FRACTIONAL POWERS OF SIMILAR OPERATORS 13

=
sinαπ

π

∫ ∞
0

λα−1y2(λ+ y2)−1hµφ(y) dλ

= (y2)αhµφ(y),

where we have consider the interchange between the Bochner integral and con-
tinuous operators in the first equality. We have used (3) of Lemma 2.12 in
the second equality and [5, Remark 3.1.1]) in the last equality. In this case
it would mean that (y2)αhµφ(y) ∈ Hµ which is false in general (just consider

φ(y) = yµ+ 1
2 e−y

2

and α = 1
4 ).

Now, we consider the Banach space Y = L1(R+, sr) ∩ L∞(R+, r) with the
norm

‖f‖Y = max
(
‖f‖L1(R+,sr)

, ‖f‖L∞(R+,r)

)
,

and the part of the Bessel operator in Y , (Sµ)Y , with domain

D
[
(Sµ)Y

]
= {f ∈ Y : Sµf ∈ Y }.

From Theorem 1.2 it is evident that −(Sµ)Y is closed and nonnegative. We
have the following proposition:

Proposition 5.2. D
[
(Sµ)Y

]
⊂ C0(R+).

Proof. By (11) and (41), L1(R+, sr) ∩ L∞(R+, r) ⊂ L1(R+)
⋂
L2(R+), then

for f ∈ D
[
(Sµ)Y

]
, f and Sµf are in L1(R+). By Remark 7.4 (see Appendix)

then hµf − hµSµf are in L∞(R+). By (1) of Lemma 2.11 we have that

(1 + y2)|hµf | ≤M,

so, hµf ∈ L1(R+).
We have thus proved that for f ∈ D

[
(Sµ)Y

]
then f and hµ(f) are in

L1(R+)
⋂
L2(R+). Then, by Remark 7.3 (see Appendix), we obtain that

hµ(hµ(f))(x) = f(x), a.e. x ∈ R+.

Since hµ(f) ∈ L1(R+) then by Proposition 7.5 (see Appendix), f = g a.e.
in R+ with g ∈ C0(R+). �

Now, we consider the following space:

B = {f ∈ Y : (Sµ)kf ∈ Y for k = 0, 1, 2, . . .} =

∞⋂
k=0

D
[
((Sµ)Y )k

]
,

with the seminorms

ρm(f) = max
0≤k≤m

(‖(Sµ)kf‖Y ), m = 0, 1, 2, . . . .

Remark 5.3. From Proposition 5.2 it is evident that B ⊂ C∞(R+)
⋂
C0(R+).

Moreover, it is clear from (11) that B ⊂ Lp(R+, sr
p) for all 1 ≤ p < ∞, and

considering (1) of Proposition 2.8 we have that Hµ ⊂ B and the topology of
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14 S. M. MOLINA

Hµ induced by B is weaker than the usual topology given in Section 2. Indeed,
from (15) and (16) we have that

(29) ‖φ‖Y ≤ C
[
γµ0,0(φ) + γµk,0(φ)

]
, φ ∈ Hµ

for k > 2µ+2, and by continuity of Sµ in Hµ, we deduce that given a seminorm
ρm there exist a finite set of seminorms {γµmi,ki}

r
i=1 and constants c1, . . . , cr such

that

ρm(φ) ≤
∑

ciγ
µ
mi,ki

(φ), φ ∈ Hµ.
Moreover, from the density of D(R+) in B we deduce the density of Hµ in B.

Proposition 5.4. B is not normable.

Proof. Suppose that B is normable. Then B is locally bounded and conse-
quently 0 has a bounded neighborhood (see [9], Theorem 1.39). Since ρm is
a increasing family of seminorms, then there exists an integer positive n such
that the set

Vn =
{
φ ∈ B : ρn(φ) <

1

n

}
,

are bounded. Consequently, there exists a constant tn > 0 such that

(30) Vn ⊂ tnVn+1.

Let φ ∈ B and ϕ =
(
(n + 1)ρn(φ)

)−1
φ. Then ϕ ∈ Vn and by (30) (tn)−1ϕ ∈

Vn+1, and hence ρn+1((tn)−1ϕ) < 1
n+1 , so

(31) ρn+1(φ) ≤ tnρn(φ).

Given a constant l > 0 and f, g ∈ C2k(R+) related by f(x) = g(lx), we have
that

(32) (Sµ)kf(x) = (l2)k((Sµ)kg)(lx).

Now, let φ ∈ B such that (Sµ)n+1φ is not an identically vanishing function
and a constant s > 1. Then ψ(x) = φ(s−1x) remains in B and verified that
(Sµ)n+1ψ is not an identically vanishing function and φ(x) = ψ(sx). Then,

(33)

‖(Sµ)n+1ψ‖L∞(R+,r) = s−µ−
1
2 s−2(n+1)‖(Sµ)n+1φ‖L∞(R+,r)

≤ s−µ− 1
2 s−2(n+1)tnρn(φ)

≤ s−µ− 1
2 s−2(n+1)sµ+ 1

2 s2ntnρn(ψ)

= s−2tnρn(ψ).

Since (33) is verified for all s > 1, taking s→∞, we conclude that

‖(Sµ)n+1ψ‖L∞(R+,r) = 0

which contradicts the assumption about ψ. Then the proposition follows. �

We denote with (Sµ)B the part of Bessel operator Sµ in B. By definition of
B, it is evident that the domain of (Sµ)B is B and the following result holds.
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DISTRIBUTIONAL FRACTIONAL POWERS OF SIMILAR OPERATORS 15

Theorem 5.5. B is a Fréchet space and −(Sµ)B is continuous and nonnegative
operator on B.

Proof. The proof is immediate by Proposition 1.4.2 given in [5]. �

6. Nonnegativity of Bessel operator Sµ in the distributional
space B′

In this section we study the nonnegativity of Bessel operator in the topo-
logical dual space of B with the strong topology, i.e., the space B′ with the
seminorms {|.|B}, where the sets B are in the family of bounded sets in B, and
are given by

|T |B = sup
φ∈B
|(T, φ)|, T ∈ B′.

Remark 6.1. As in [6, Remark 3.4, p. 263], B′ is sequentially complete because
B is not normable. Moreover, for 1 ≤ p ≤ ∞ we have Lp(R+, sr

p) ⊂ B′.
To prove this, we observe that given f ∈ Lp(R+, sr

p) and φ ∈ B and q the
conjugate of p then

(34)
∣∣∣∫ ∞

0

fφ
∣∣∣ =

∣∣∣∫ ∞
0

fφs−1r−psrp
∣∣∣ ≤ ‖f‖Lp(R+,srp)‖φs−1r−p‖Lq(R+,srp),

and

‖φs−1r−p‖Lq(R+,srp) =
{∫ ∞

0

|φs−1r−p|qsrp
} 1
q

=
{∫ ∞

0

|φ|q(cµr2r−p)qsrp
} 1
q

= cµ

{∫ ∞
0

|φ|qr2q−pq+ps
} 1
q

= cµ

{∫ ∞
0

|φ|qsrq
} 1
q

.(35)

Moreover, by (14) we have that

(36) ‖φ‖Lq(R+,srq) ≤ ρ0(φ),

and from (34), (35) and (36) we obtain that f ∈ B′.
Now, let B be a bounded set in B then

sup
φ∈B

∣∣∣∫ ∞
0

fφ
∣∣∣ ≤ cµ‖f‖Lp(R+,srp) sup

φ∈B
‖φ‖Lq(R+,srq) ≤ cµ‖f‖Lp(R+,srp) sup

φ∈B
ρ0(φ).

Consequently, the topology in Lp(R+, sr
p) induced by B′ with strong topology

is weaker than the usual topology.

Remark 6.2. By Remark 5.3, B′ ⊂ H′µ. Moreover, from the continuity of the
Bessel operator in B, we can consider Sµ in B′ as adjoint operator of Sµ in B,
that is

(SµT, φ) = (T, Sµφ), T ∈ B′, φ ∈ B,
and we denote with (Sµ)B′ the part of Bessel operator in B′.

Theorem 6.3. The operator −(Sµ)B′ is continuous and nonnegative consid-
ering the strong topology in B′.
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16 S. M. MOLINA

Proof. The proof of continuity is identical to the proof given in [6, Theorem
3.5, p. 264] for the Laplacean operator and the nonnegativity is a consequence
of theory of fractional powers in distributional spaces (see [5, p. 24]). �

Remark 6.4. The operator (Sµ)B′ is not injective because the function xµ+ 1
2 is

solution of Sµ = 0 and belongs to B′, in fact

|(xµ+ 1
2 , φ)| ≤ cµ‖φ‖L1(R+,sr) ≤ cµρ0(φ), (φ ∈ B).

According to representation of fractional powers of operators in locally con-
vex spaces given in [5], for Re α > 0, n > Re α, T ∈ B′, (−(Sµ)B′)

α is given
by

(−(Sµ)B′)
αT =

Γ(n)

Γ(α)Γ(n− α)

∫ ∞
0

λα−1
[
−(Sµ)B′(λ− (Sµ)B′)

−1
]n
T dλ.

From the general theory of fractional power in sequentially complete locally
convex spaces (see [5, p. 134]), we deduce immediately some properties of pow-
ers such as multiplicativity, spectral mapping theorem, and

1) If Re α > 0, then

(37)
(

(−(Sµ)B)α
)∗

=
(

(−(Sµ)B)∗
)α
.

Since (−(Sµ)B)∗ = −(Sµ)B′ then from (37) we obtain the following duality
formula

((−(Sµ)B′)
αT, φ) = (T, (−(Sµ)B)αφ), (φ ∈ B, T ∈ B′).

2) Since the usual topology in Lp(R+, sr
p) is stronger than the topology

induced by B′ then we can deduce that[
(−(Sµ)B′)

α
]
Lp(R+,srp)

= ((−(Sµ,p))
α,

if Re α > 0, (see [5, Theorem 12.1.6, p. 284]).

7. Appendix

7.1. Some properties of Hankel transform in Lebesgue spaces

Proposition 7.1. Let f, g ∈ L1(R+, sr). Then
(1) hµf ∈ L∞(r).
(2)

(38)

∫ ∞
0

hµfg =

∫ ∞
0

fhµg.

Proof. The proof is immediate. �

In [3] is studied a version of Hankel transform given by:

(39) Hµ(f)(x) = cµ

∫ ∞
0

(xy)
−µ

Jµ(xy)f(y)s(y)dy
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DISTRIBUTIONAL FRACTIONAL POWERS OF SIMILAR OPERATORS 17

for f ∈ L1(R+, s). Hµ is related whit hµ by

hµ(f) = r−1Hµ(rf)

for f ∈ L1(R+, sr) (r and s like as in Section 2). From this relation and the
inversion theorem for Hµ (see [3, Corollary 2e, p. 316]), we obtain the following
inversion theorem for hµ.

Proposition 7.2. If f ∈ L1(R+, sr) and hµ(f) ∈ L1(R+, sr) then f may be
redefined on a set of measure zero so that it is continuous in R+ and

(40) f(x) =

∫ ∞
0

√
xyJµ(xy)hµ(f)(y)dy = hµ(hµ(f))(x).

Remark 7.3. From the above proposition we deduce immediately the validity
of equality hµhµf = f in Hµ and H′µ.

With Lp(R+) we denote the usual Lebesgue space of functions defined in
R+ and with norm:

‖f‖p =
{∫ ∞

0

|f(x)|p dx
} 1
p

.

Remark 7.4. Since the function (z)
1
2 Jµ(z) is bounded in R+ for µ > − 1

2 , then

for f ∈ L1(R+) we have that hµf is continuous and ‖hµf‖∞ ≤ C‖f‖1.

As usual, we denote with C0(R+) the set of continuous functions defined in
R+ and vanishes at infinity. We have the following proposition:

Proposition 7.5. hµ(L1(R+)) ⊂ C0(R+).

Proof. First, we observe that

(41) L1(R+, sr) ∩ L∞(R+, r) ⊂ L1(R+).

Indeed,∫ ∞
0

|f | dx =

∫ ∞
0

|f |rr−1 dx =

∫ 1

0

|f |rr−1 dx+

∫ ∞
1

|f |rr−1 dx

≤ ‖f‖L∞(R+,r)

∫ 1

0

r−1 dx+

∫ ∞
1

|f |r−1 dx

= C‖f‖L∞(R+,r) + cµ‖f‖L1(R+,rs),

because r < 1 in [1,∞), µ+ 1
2 > 0 and rs = c−1

µ r−1.

By (41) and (11) we deduce that Hµ ⊂ L1(R+). Since D(R+) ⊂ Hµ then
Hµ is dense in L1(R+). Given f ∈ L1(R+) and {φn} ⊂ Hµ such that φn → f in
L1(R+) then by Remark 7.4 hµ(φn)→ hµ(f) uniformly. Since hµ(φn) ∈ C0(R+)
then hµ(f) ∈ C0(R+). �

Remark 7.6. For µ > − 1
2 , Hµ is a dense subset of L2(R+) and for φ ∈ Hµ we

have that
‖hµφ‖2 = ‖φ‖2.
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18 S. M. MOLINA

So, we can consider the extension to L2(R+) of hµ and

‖hµf‖2 = ‖f‖2
for f ∈ L2(R+).

7.2. Hankel convolution

In this section, we prove Lemma 2.7. Before this we observe that the kernel
Dµ(x, y, z) of Hankel convolution satisfies that Dµ(x, y, z) ≥ 0 and

(42)

∫ ∞
0

zµ+ 1
2Dµ(x, y, z) dz = c−1

µ xµ+ 1
2 yµ+ 1

2

for x, y, z ∈ (0,∞).

Proof. By hypothesis and (42) we have that∫ ∞
0

∫ ∞
0

x
−µ− 1

2
0 yµ+ 1

2Dµ(x0, y, z)φn(z) dydz = 1,

then

f]φn(x0)− f(x0)

=

∫ ∞
0

∫ ∞
0

Dµ(x0, y, z)φn(z)yµ+ 1
2

(
y−µ−

1
2 f(y)− x−µ−

1
2

0 f(x0)
)
dydz.

By continuity of f in x0 let δ > 0 such that |y−µ− 1
2 f(y)− x−µ−

1
2

0 f(x0)| < ε if
|y − x0| < δ, and we consider

|f]φn(x0)− f(x0)| ≤ |I1|+ |I2|,

where

(43) |I1| =

∣∣∣∣∣
∫ δ

0

∫ ∞
0

Dµ(x0, y, z)φn(z)yµ+ 1
2

(
y−µ−

1
2 f(y)− x−µ−

1
2

0 f(x0)
)
dydz

∣∣∣∣∣,
(44) |I2|=

∣∣∣∣∣
∫ ∞
δ

∫ ∞
0

Dµ(x0, y, z)φn(z)yµ+ 1
2

(
y−µ−

1
2 f(y)− x−µ−

1
2

0 f(x0)
)
dydz

∣∣∣∣∣.
Since Dµ(x0, y, z) 6= 0 only if |x0 − z| < y < x0 + z, and if 0 < z < δ, then
(|x0 − z|, x0 + z) ⊂ (x0 − δ, x0 + δ), then we obtain in (43) that

|I1| ≤ ε
∫ δ

0

∫ ∞
0

Dµ(x0, y, z)φn(z)yµ+ 1
2 dydz ≤ εxµ+ 1

2
0 .

On the other hand

|I2| ≤ 2‖f‖L∞(R+,r)

∫ ∞
δ

∫ ∞
0

Dµ(x0, y, z)φn(z)yµ+ 1
2 dydz

= 2‖f‖L∞(R+,r) x
µ+ 1

2
0

∫ ∞
δ

c−1
µ zµ+ 1

2φn(z) dz
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DISTRIBUTIONAL FRACTIONAL POWERS OF SIMILAR OPERATORS 19

so, |I2| → 0 when n→∞ and the first assertion has been proven. The second
affirmation follows from the previous proof and the uniformly continuity of
rf . �

7.3. Properties of Nλ

Proof of Lemma 4.2. a)

‖Nλ‖L1(R+,sr)
=

1

cµ

∫ ∞
0

λ
µ
2 x

1
2Kµ(

√
λ x)xµ+ 1

2 dx

=
1

cµ

(1

2

)µ+1

λµ
∫ ∞

0

[∫ ∞
0

x2µ+1e−
λx2

4t dx

]
e−t

dt

tµ+1

=
1

cµ
2µλ−1Γ(µ+ 1)

∫ ∞
0

e−tdt = λ−1.

For b), in virtue of the following equality

(45)

∫ ∞
0

xµ+ 1
2 e−

x2

2
√
xy Jµ(xy) dx = yµ+ 1

2 e−
y2

2 , y > 0,

(see [8, (5.9), p. 46]), setting y = (
√
a)−1r with a, r > 0, and considering the

change of variable s = x√
a
, then we obtain that∫ ∞

0

(
√
a s)µ+ 1

2 e−
as2

2
√
sr Jµ(sr)

√
a ds =

(
r√
a

)µ+ 1
2

e−
r2

2a

so,

(46)

∫ ∞
0

sµ+1e−
as2

2 Jµ(sr) ds = a−µ−1rµe−
r2

2a

for all a > 0. Then,

(47)

hµNλ(y) =

∫ ∞
0

λ
µ
2 x

1
2Kµ(

√
λ x)
√
xy Jµ(xy) dx

= λµ y
1
2

(1

2

)µ+1
∫ ∞

0

xµ+1

[∫ ∞
0

e−t−
λx2

4t
dt

tµ+1

]
Jµ(xy) dx.

Since that ∫ ∞
0

xµ+1

[∫ ∞
0

e−t−
λx2

4t
dt

tµ+1

]
|Jµ(xy)| dx

= yµ
∫ ∞

0

[∫ ∞
0

e−
λx2

4t x2µ+1
∣∣(xy)−µJµ(xy)

∣∣ dx] e−t dt

tµ+1
<∞,

we can reverse the order of integration in (47) and applying (46) we obtain that

hµNλ(y) = λµ y
1
2

(1

2

)µ+1
∫ ∞

0

[∫ ∞
0

xµ+1e−( λ2t ) x
2

2 Jµ(xy) dx

]
e−t

dt

tµ+1

= λµ y
1
2

(1

2

)µ+1
∫ ∞

0

( λ
2t

)−µ−1

yµe−
ty2

λ e−t
dt

tµ+1
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20 S. M. MOLINA

= λ−1 yµ+ 1
2

∫ ∞
0

e−t(1+ y2

λ ) dt.

Considering the change of variable s = t(1 + y2

λ ) in the last integral we obtain
finally

hµNλ(y) = λ−1 yµ+ 1
2

∫ ∞
0

e−s
(

1 +
y2

λ

)−1

ds

= λ−1 yµ+ 1
2

(
1 +

y2

λ

)−1

=
yµ+ 1

2

λ+ y2
.

�

Proof of Lemma 4.3. Suppose that f ∈ Lp(R+, sr
p) and ψ ∈ Hµ, we claim

that

(48)

∫ ∞
0

(Nλ]f) (x)ψ(x)dx =

∫ ∞
0

f(z) (Nλ]ψ) (z)dz.

Indeed, we first observe that the following integral is finite∫ ∞
0

|f(z)|
[∫ ∞

0

∫ ∞
0

|Nλ(y)| |ψ(x)|Dµ(x, y, z)dxdy

]
dz.

In fact, given a integer q such that 1
p + 1

q = 1, the function

G(z) =

∫ ∞
0

∫ ∞
0

|Nλ(y)| |ψ(x)|Dµ(x, y, z)dxdy

is in Lq(R+, sr
q) because it is the convolution of |Nλ(y)| ∈ L1(R+, sr) and

|ψ(x)| ∈ Lq(R+, sr
q). Since f ∈ Lp(R+, sr

p) then∫ ∞
0

|f(z)|G(z)dz =

∫ ∞
0

(r |f(z)|)(s−1r−1G(z))s dz <∞

because r |f | ∈ Lp(R+, s) and s−1r−1G = cµrG ∈ Lq(R+, s). Then∫ ∞
0

f(z) (Nλ]ψ) (z) dz =

∫ ∞
0

[∫ ∞
0

∫ ∞
0

f(z)Nλ(y)Dµ(x, y, z)dz dy

]
ψ(x)dx

=

∫ ∞
0

(Nλ] f)(x)ψ(x)dx

and we thus get (48). The proof for f ∈ L∞(R+, r) is similar.
Now, given φ ∈ Hµ and f ∈ Lp(R+, sr

p) or L∞(R+, r), by (48), we have
that

(49) (hµ(Nλ] f), φ) = ((Nλ] f), hµφ) =

∫ ∞
0

f(x)Nλ] hµφ(x) dx.

By Lemma 2.6, Proposition 7.2 and item b) of Lemma 4.2 we obtain that

hµ(Nλ]hµφ)(y) = rhµ(Nλ)hµ(hµφ)(y) =
φ(y)

λ+ y2
.
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So,

(50) Nλ] hµφ = hµ

( φ

λ+ y2

)
.

Finally, from (49) and (50) we obtain that for φ ∈ Hµ that

(hµ(Nλ] f), φ) =

∫ ∞
0

f(x)Nλ] hµφ(x) dx =

∫ ∞
0

f(x) hµ

( φ

λ+ y2

)
(x) dx

=

∫ ∞
0

1

λ+ x2
hµ(f)(x)φ(x) dx =

( 1

λ+ x2
hµ(f), φ

)
.

�
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