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MOMENT APPROACH TO THE ADMISSIBLE CONTROL
PROBLEM FOR LINEAR SYSTEM

CuunJt L1, X1AOTONG REN, AND HAN YAO

ABSTRACT. In this paper, we consider the admissible control problem for
the linear systems by using the solution of the Hausdorff moment problem.
In addition, we consider the admissible control problem for SIR epidemic
model.

1. Introduction
Consider the following linear continuous system
(1) z (t) = Az (t) + bu (),

where z (t) € R™ is the state vector, u (t) € R™ is the input vector, A € R"*™,
b € R™ Given an initial condition zg € R™, and a time 6, find one of the
controls |u ()| < 1 such that the trajectory from xo of the system (1) arrives
to the origin in time #. This problem is called the admissible control (AC)
problem ([3]).

The authors of [3] gave the following control with no restriction,

6
(2)  u(t)=—b*e" VN (0) 2o, where N () = / e Atbb*e= At
0

Moment problem is related to operator theory and has many applications
(see [4], [5], [6], and [7], etc). For the bounded restriction, the solution of AC
problem (1) is related to the following two moment problems.

1.1. The Markov moment problem and the Hausdorff moment prob-
lem

Let Co, 1, be the set of all measurable functions on [0, 0] such that 0 < f (1) <
L for all 7 € [0, 0] . Then the L-Markov moment problem (MMP) for an interval
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[0, 0] is stated as follows: Given a finite sequence of real numbers ¢, ¢1, . .., Ck,
find the set of functions f € Cp r, such that

6
cj:/ rf(r)dr, j=0,1,... k.
0

Let M [0,0] be the set of all nonnegative measures on [0,60]. Then the
Hausdorff moment problem (HMP) for an interval [0,0] is stated as follows:

Given a finite sequence of real numbers sg, $1, ..., Sk, find the set of measure
o € M0, 0] such that

0
sj:/ rdo (1), j=0,1,...,k.
0

Recall from [7] that there is a bijection between the set Cp , and measures
o € M[0,0] satisfying foeda (1) =1 is given by

[0t ([ 12

which determine the relation between (cj)k_é and (sj)k

: so=1,s81 =c1, and

i= j=0°
c1 -1 0
) 2¢o 1 0
(3)  sp= o ., k>2
(k=1 ek (k—2cra - —(k—1)
key, (k—1)cp—1 - c1

By [7, Theorem 2.1], we have the following result.

Proposition 1. The MMP is solvable with moments (cj);:o1 if and only if the
HMP with (s;);_, is solvable.

1.2. Algorithm for the control

In [3], the authors introduced the method for obtaining the admissible con-
trol of the system (1) with A := (d;41);;_, and b := (1,0,...,0)T, where
i j+1 is the Kronecker symbol, and T denotes the transpose operation. We
summarize that as following algorithm.

I. Calculate all data ¢; = %, 1=1,2,....

II. Calculate s; by (3).
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III. Calculate H;, u;,v;, T and Ry (z) by the following relations.

| |ifn:2k+1 |ifn:2k
k k
H,y (5i+j+1)i i=0 . (SiJrj)Z; 0 _—
Hy (05i) — Sitjt1);, i=0 (0sitj+1 — Sivj+2); j=0
(251 (—807—81,... —Sk) (0,—80,... —Sk— 1)T
k
T | Gig+1)i =0 (Bijr1)t i
U9 0T — I uy (517950,52 0s1,...,8 —Os_1)7
vy (1,0,...,0)T € R*1 [ (1,0,...,0)T € RFL
Uy (1,0,...,0)T € R [ (1,0,.. ) € R*
Rr(2) | (I —=21)" (I— zT)
IV. Calculate Uy, Uj2, Usy, and Uss by the following relations.
‘ ‘ if n is odd number | if n is even number |
Ui (2) | 1 = zujRyy (2) Hylvy 1 — zuj Ry- (2) H, vy
Uiz (2) [ wiRry (2) H 'wy M — zu{Rp; (2) H{ "ot M + zuiRyy (2) H 'wa
Upi (2) | = (0 — 2) zvi Rey (2) Hy Ty —zvi Rrs (2) H, vy
Uz (2) | 14 2vi Ryy (2) H 'wa 1 — 201 Rys (2 )Hl_lvllberzvaT; (2) H; "'y
M (1+ 6 (w[Hy "or — uHy 'vs)) (QviHy o)~

(ui
V. Let z =t + ie, and calculate —zs (z) by the following relations.
Uqq (97 (t+Z ))(F+’LG+’L7T)+U12

)

—z5(z
() U21(t9—(t+ze) (F+’LG+’L7T)+U22
where )
1. (0—1)" + € e
F= §1lr17t2 o G= arctanil52 T
VI. Let € = 0, and calculate the real part X and the imaginary part Y of
—zs(z).

VII. Finally, we can obtain
2 Y
t)=—Zarg— — 1.
w(t) —arg

Furthermore, in [2], the authors considered the extremal controls of the AC
problem. In recent years, many researches studied SIR epidemic model (see
[9], [10], etc). In this paper, we will obtain the clear solutions of the admissible
control problem for the canonical system with n = 1,2 and 3 by using the
above algorithm. As in application, we consider the admissible control problem
for SIR epidemic model.

2. The solutions of the AC problem
By using the algorithm step by step, we can obtain the results.
Theorem 2. The AC problem (for n =1)
(4) z=u(t), [u <1, 2(0) =20, s.t. 2(0) =0,
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is admissible if and only if |xo| < 6. In this case, u (t) = f% arg % — 1, where

1 1 0—t 60—t
X = §7T2011 + 6 <612 (111 T) + 013> <614 (111 T) + C15> )

1
Y:1—67r(t79)016§0 with

i1 =t(t—0)°(0—20)> (2t — 0 —x0), c12=2t—0)(0—10),
ci3=(0+x0) (2t —0+20), cr1a=(0—x0)(t—0)(2t—0—1xp),
c15 =20 +m0), c16=(0—x0)*(0+20)°.

Corollary 3. The AC problem (for n =1)

(5) d=ax+bu(t), a<0, b#0, |ul <1, z(0) ==, s.t. z(0) =0,

is admissible if and only if |xo| < 0. In this case, u (t) = % (—% arg % - 1) et
where X and Y are as in Theorem 2.

Proof. Let z = xe~%, then by Theorem 2, we know that
d=ut)be " :=a(t),|ul <1, 2(0) = 20, s.t. 2(0) =0,

is admissible if and only if |z9| < 6, that is, |zo| < 6. In this case, @ (t) =
—2Zarg L — 1, that is, u (t) = § (—2arg ¥ — 1) e O
Proposition 4. The AC problem (for n = 2)

T =1, lul <1,

L2 = 1,

such that x1 (0) = x2(0) =0
is admissible if and only if
lzo1] <0 and |wog + 20w01| < 0% — 3.

In this case, u(t) = —2 arg X — 1, where

0—t 0—t
X = 7T2021 +t(t — 9) (CQQ <1n , > +623) <C24 <ln T) + 025) ,

Y = meos (t—0)  with
Co1 = 1262 (—dagy + 6% — 23, — 20301)° (t — 0)*
X (—41'02 + 4t0 — 362 — 4txor — ,7:81 + 29$01)
X (745602 + 4t0 — 92 = 4t1‘01 + SC%I — 29:601) s
Coo = 0 (—41‘02 + 92 — ‘T(2)1 — 29$01) (t — 9)
X (745602 + 410 — 92 — 4t1‘01 + SC%I — 29:601) s
Co3 = — (4$02 + 92—$31 + 29$01) (41‘02 + 4t0 — 362 + 4txgr — $31 — 291‘01) R
Coq4 = t0 (*456024’927:6(2)1729:601) (74$02+4t97392 - 4t1‘01 - 56(2)1 + 29:601) 5
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Cos = — (41‘02 +6% - $(2)1 + 29:001) (4:002 + 410 — 0% + dtxgy + $(2)1 + 29:001) ,
o6 = t6? (4:002 +6%— z31 + 29z01)2 (—4z02 +6%— z31 — 29$01)2 .

Let
5(0) = {(wo1, wo2) [ (x1 (0) , 22 (0)) = (w01, x02) and (z1(0),22(0)) = (0,0)}.
Then S (1),5(2) and S (3) are as the following:

Xo2 3
5
ol
302 4] 2 3 || 3
e Xo1
o
3
5(0)
Fig. 1. The plots of S ()
where
S(1) = { To1, To2) | |zo1| <1, and |xo2 + 2201| < 1 —9631},
):{ 1'01,1'02 |£L'01|<2 and |I02+4SE01|§47$%1},
(3) = {(wo1, o2) | |zo1] < 3, and |z + 6mo1| < 9 — a5, } -
Proposition 5. The AC problem (for n = 3)
i'l = ’EL, |’EL| S 17
iQ =T,
T3 = T2,

such that x1 (0) = 22 () = 23 () =0
is admissible if and only if |xo1| <0 and
(394—485032—:7531—602z31+96x01x03 ) > 96003 — 40, + 480702 +126% 201 | .

In this case, u (t) = —2 arg X — 1, where

0—t
X = 47T2t2 (t - 9)3 031032033 +1t <4t (t — 9)2 C31C33 <1n T) + 034035)

0—t
X <(t — 9) C31C32 <1H T) + 4034036) s

Y = wtcs c5, (t—0)  with
Cc31 = 36* — 48,%32 = $él — 6921'%1 — 9660203 + 96201203 + 491‘%1 — 4892$02
- 12935601,
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3o = 24120 + 30" — 244223, — 192txo3 — 4825, — x5, — 660715,
+ 960203 + 96201103 — 24t0° + Stad, — 96t w0y — 4023,
+ 480209 + 120301 + 24t0x2, + 24107 w0, — 48%0x01,
c33 = — 48203 — 30° — 24twos — fy — 120102 — 12201702
+ 6t0% — 6tad, — 3023, + 30%w01 — 12t0x01,
c3q = 30% — 48x32 - xél - 69290%1 + 960x03 + 96201203 — 499031
+ 4802205 + 1203201,
35 = 24207 + 30" — 241202, 4 192txos — 4823, — x5, — 60222,
— 96003 + 96101203 — 24t0° — 8tad, + 96t%x02
+ 4025 — 480° w02 — 120%x01 + 24t027, — 24t0% 201 + 48t°0m01
36 = 48103 — 30% + 24txog + x3; + 120202 — 12201702
+ 610 — 6tx], — 30x3, — 30%w01 + 12t0x0;.

3. Some examples
Example 1. The case of n = 1. Let § = 3,9 = 1, then

u(t):_%argzi((?)_la gl(t):4ﬂ-(t_3)a

hy (t) = 72t (t — 2) (t — 3)°

+ ((t—2)(t—3)1n(3—;t)+2> (t(t—3)21n(3_t) +2(t_1))_

t

Since the roots of hy (t) on [0, 3] are
t1 =~ 0.033658, to~2.11099, t3~ 2.23092,

we obtain
~2 (arctan 23 — 1) =1, if 0 <t <0.033658,
" 2 (arctan 203) =1, if 0.033658 < ¢ < 2.11099,
u(t) =
~2 (arctan £ — ) — 1, if 211099 < ¢ < 2.23092,
-2 (arctan ££3) — 1, if 223002<t<3.

Example 2. The case of n = 2. Let xg1 = 0,x92 = 1,0 = 3. Then

u(t) = —%argizi?) -1,

ho (t) = 225722 (t — 3)* (12t — 31) (12t — 13)

g2 (1) = 380257t (t — 3) ,

3t
+t(t—3) (—156t +299 + (1802 — 735t + 585) In ( p ))
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3—t
X (—156t + 65 + (180> — 465¢) In (—t)) :

Since the roots of ho (t) on [0, 3] are
t1 = 0.0197331, t2~1.11522, t3~2.52602, ¢4~ 2.90912,

we obtain
~2 ((arctan 24} — w) 1, if 0<t<0.0197331,
~2 (arctan Zzi’g) -1, if  0.0197331 < ¢ < 1.11522,
w(t) = —2 (arctan 20 — ) — 1, if 111522 < ¢ < 2.52602,
2 (arctan 23) — 1, if 252602 <t < 2.90912,
—2 (arctan {20 — ) —1, if 290912 <¢<3.

Example 3. The case of n =3. Let 0 =3, x91 = 0,202 = %,ZEQ3 =1, then

2 g3 (t)
t)= — — —1 t) = 402624290257t (t — 3
u() Warghg(t) ) 93() 7T( )a

hs (t) = 131469156t°72 (2t — 7) (—40t + 82 + 35) (t — 3)°

3—t
+ 194481t (13 (t —3) (—40t + 8> + 35) In % —20 (22t — 5))

B—1)

X (52t 2t —7)(t—3)*In — 5 (152t + 88t — 91)) .

Since the roots of hg (t) on [0, 3] are
t ~ 0.0210242, 1y ~ 1.11293, 13 ~ 2.39258,

we obtain
~2 (arctan 248 —7) — 1, if 0<1<0.0210242,
o ~2 (arctan Zzig) -1, if 0.0210242 < ¢ < 1.11293,
u(t) =
~2 (arctan 20 — ) ~ 1, if 111293 < ¢ <2.39258,
~2 (arctan £23) =1, if 239258 <t<3.

4. The AC problem for SIR epidemic model

Epidemic models divide the population into three classes: the susceptible
S, the infective I, and the removed R. Mena-Lorca and Hethcote founded the
following SIR epidemic model:

5:A-551-d$+cl+6R,
(6) I=pSI—(r+d+a+o)l,

R=rI—(d+ )R,
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where A is the recruitment rate, d the natural rate, 8 the infection rate, «
the death rate to disease, r the recovery rate, c is the sensible rate without
immunity, and ¢ the rate that the removed return to the susceptible. Let

Ry = %. If Ry < 1, there only exists the disease free equilibrium

point P(4,0,0), which is globally asymptotically stable (see [9]). In [1] and
[8], the authors considered the domain of attraction for (6).

In this paper, we consider the case of f = 0, then Ry < 1, so the disease
free equilibrium point P(%,0,0) is globally asymptotically stable. Let = =
S — %,y = I,z = R, then P changes to origin that is the unique equilibrium
point of the following linear system:

&= —dr+cy+dz,
(7) y:_(r+d+a+0)ya

Z=ry—(d+9)z.
4.1. With no restriction

Leta:r:dzézc:%,then

P1 [t 2] [
(8) g | = 0 -2 0 y |+ 1|
z 0o i -1 z 0
Since the controllability matrix
1 0 -3
Qc: 1 -2
0 4 -

is invertible, (8) is completely controllable. Take 2(0) = y(0) = z(0) = 1, by
(2), we can obtain

u(t) = 1.0627¢* — 11.973¢" + 13.801¢3".

4.2. With bounded restriction

We take the following linear transform

1
y | = 0o -2 0 n |,
z 1 1 0 ¢

3 ;
¢ U
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The initial state point is (1,1,1)T and 6 = 2. In this case, by using Corollary
3, we can obtain

X = ((mT_t) (2t—3)(t—2)+6> <6t+2<ln?)t(t—2)2—3>
+ 212t (2t — 3) (t — 2)°,
Y =97 (t—2).

The numerical root of X in [0,2] is t; &~ 6.218 5 x 1072, Hence the control is
given by the following:

u(t):{:

1

(arctan (%) —7) —1, if 0 <¢ < 0.062185,

) -1, if 0.062185 < ¢ < 2.

BRI
T

(arctan (

\
oz f| X:006218
| Y- 6278205

Fig. 2. The plot of w (t)
The plots of state vector of system (8) are as following. The left one is the
trajectory from (1,1,1)T to the origin in time § = 2 with no restriction; the

right one is the trajectory from (%, -2, 2)T to the origin in time 6§ = 2 with
bounded restriction.

Fig. 3. The plots of state vector of system (5)
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