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SEMISIMPLE DIMENSION OF MODULES

Bahram Amirsardari and Saeid Bagheri

Abstract. In this paper we define and study a new kind of dimension

called, semisimple dimension, that measures how far a module is from

being semisimple. Like other kinds of dimensions, this is an ordinal valued
invariant. We give some interesting and useful properties of rings or

modules which have semisimple dimension. It is shown that a noetherian
module with semisimple dimension is an artinian module. A domain

with semisimple dimension is a division ring. Also, for a semiprime right

non-singular ring R, if its maximal right quotient ring has semisimple
dimension as a right R-module, then R is a semisimple artinian ring.

We also characterize rings whose modules have semisimple dimension. In

fact, it is shown that all right R-modules have semisimple dimension if
and only if the free right R-module ⊕∞i=1R has semisimple dimension, if

and only if R is a semisimple artinian ring.

1. Introduction

In the literature, many kinds of dimensions have been defined and inves-
tigated for modules and they have important roles in the study of ring and
module theory. For example the Krull dimension has been first defined in 1928
by W. Krull for a commutative noetherian ring, motivated by E. Noether’s
studies about the relationship between the chain of prime ideals and dimension
of algebraic varieties. After that this theory has been investigated and devel-
oped for non commutative rings and modules by many authors, such as W.
Krull, G. Krause, A. V. Jategaonkar, and many other people. Also, uniform
module and uniform dimension of a module have been introduced and studied
by Goldie (1958-1960). It is also referred to as Goldie dimension. Recently [7]
introduced uniserial dimension of a module. Furthermore, [3] introduced the
dual version couniserial dimension. Each of these dimensions provides useful
technical tools for the study of ring and module structure (see [7], [3], and [5]).

In this paper we define a notion of dimension of modules, called semisimple
dimension. Similar to many other kinds of dimension, the value of this dimen-
sion is an ordinal. In fact, semisimple dimension of a module M shows in some
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2 B. AMIRSARDARI AND S. BAGHERI

sense that how far is M from being semisimple. In order to define semisimple
dimension for modules over a ring R, we define, by transfinite induction, for
every ordinal α ≥ 1 the class Xα of R-modules. In the first step, let X1 be
the class of all non-zero semisimple modules. Consider an ordinal α > 1; and
assume that Xβ has been defined for ordinals β < α. Now suppose that Xα
be the class of all R-modules M for which each of non-zero submodules N of
M , which is not a direct summand of M , we have N ∈

⋃
β<α Xβ . If there

exists some Xα containing the R-module M , then we say that the semisim-
ple dimension of M is defined or M has semisimple dimension and the least
such α is called the semisimple dimension of M , denoted by s.s.dim(M). For
M = 0, we define s.s.dim(M) = 0. If for a non-zero module M there is no
Xα containing M , then we say that s.s.dim(M) is not defined, or M has no
semisimple dimension.

In Section 2, we prove some basic properties of the semisimple dimension.
We show that for an R-module M the existence of the semisimple dimension is
equivalent to say that for each descending chain M1 ≥M2 ≥ · · · of submodules
of M , there is an integer m ≥ 1 such that Mr is a direct summand of Ms for all
r ≥ s ≥ m (see Proposition 2.2). It is clear by definition that every submodule
of a module with semisimple dimension must have semisimple dimension. It
is proven in Proposition 2.5 that an R-module M has semisimple dimension
and finite uniform dimension if and only if it is an artinian module. We also
show with an example that an R-module with semisimple dimension need not
be artinian (see Example 2.4). However, we prove in Proposition 2.7 that
a noetherian module M with semisimple dimension has finite length and in
this case length(M) is an upper bound for semisimple dimension of M . Also,
we study the relationship between the semisimple dimension and the uniform
dimension of a module. In Section 3, we study the rings whose all modules have
semisimple dimension. Proposition 3.1 shows that a domain D with semisimple
dimension is a division ring. We show in Theorem 3.3 that if R is a semiprime
right non-singular ring and its maximal right quotient ring Q has semisimple
dimension as a right R-module, then R is a semisimple artinian ring. It is
shown that for a ring R the right R-module ⊕∞n=1R has semisimple dimension
if and only if; all right R-modules have semisimple dimension and this is also
a necessary and sufficient on the ring R to be a semisimple artinian ring (see
Proposition 3.5). This gives a new characterization of semisimple artinian rings.

Now we recall some of basic necessary definitions in ring and module theory.
An R-module M is called a semisimple module if M is a direct sum of its simple
submodules. For an R-module M a submodule N of M is called an essential
submodule and we write N C M if N intersects every non-zero submodule of
M non-trivially. The submodule Z(M) = {x ∈ M : ann(x) C R} is called
the singular submodule of M . If Z(M) = 0, then M is called a non-singular
module. Taking M = RR, the ring R is called a right non-singular ring if
Z(RR) = 0. A module M is of finite uniform dimension (or finite Goldie
dimension) if M contains no infinite direct sum of its non-zero submodules, or
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SEMISIMPLE DIMENSION OF MODULES 3

equivalently, M is an essential extension of ⊕ni=1Ui for some natural number n
and independent uniform submodules U1, . . . , Un in M . Note that the natural
number n is unique and it is called the uniform dimension of M and we write
u.dim(M) = n.

Throughout this paper, R denotes always an arbitrary associative ring with
unit element 1 6= 0 and all modules are unitary right modules. If N is a
(proper) submodule of M we write (N < M) N ≤ M . Also, for an R-module
M , ⊕∞i=1M denotes the countably infinite direct sum of copies of M . For a
submodule N of M and an integer k > 1, ⊕∞i=kN is the submodule ⊕∞i=1Ni of
⊕∞i=1M with N1 = N2 = · · · = Nk−1 = 0 and i ≥ k Ni = N for i ≥ k.

2. Some basic and preliminary results

As we defined in the introduction, semisimple dimension of an R-module
is an ordinal valued invariant. For basic concepts about ordinals the reader
is refered to [8]. We start this section with a remark on the definition of
semisimple dimension.

Remark 2.1. It can be easily seen from the definition that, if an R-module M
has semisimple dimension and N ≤M , then N has also semisimple dimension
and s.s.dim(N) ≤ s.s.dim(M). Moreover, if s.s.dim(M) = s.s.dim(N), where
N is a submodule of M , then N is a direct summand of M . Also, since every
set of ordinal numbers has a supremum, it is an immediate consequence of the
definition that M has semisimple dimension if and only if for every submodule
N of M which N is not a direct summand of M , s.s.dim(N) is defined. In the
latter case, if

α = sup{s.s.dim(N) : N ≤M, N is not a direct summand of M},
then s.s.dim(M) ≤ α+ 1.

The following proposition helps us to determine that an R-module has
semisimple dimension.

Proposition 2.2. For an R-module M the following assertions are equivalent.
(1) M has semisimple dimension.
(2) For every descending chain of submodules M1 ≥ M2 ≥ · · · , there exists

n ≥ 1 such that Mj is a direct summand of Mi for all j ≥ i ≥ n.

Proof. (1) ⇒ (2) Let M1 ≥ M2 ≥ · · · be a chain of submodules of M . Put
γ = inf{s.s.dim(Mn) : n ≥ 1}. So γ = s.s.dim(Mn) for some n ≥ 1. By
Remark 2.1, Mj is a direct summand of Mi, for all j ≥ i ≥ n, because γ is the
infimum.

(2) ⇒ (1) Let on contrary, M does not have semisimple dimension. Then
there is a submodule M1 of M which is not a direct summand of M and
M1 does not have semisimple dimension. So there exists a submodule M2

of M1 such that M2 is not a direct summand of M1 and M2 does not have
semisimple dimension. Continuing this process, we obtain a descending chain
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4 B. AMIRSARDARI AND S. BAGHERI

of submodules M1 ≥ M2 ≥ · · · , such that for every j ≥ i ≥ 1, Mj is not a
direct summand of Mi and this is a contradiction. �

The following corollary is an immediate consequence of Proposition 2.2.

Corollary 2.3. Let M be an artinian R-module. Then M has semisimple
dimension.

The following example shows that a ring with semisimple dimension need
not be artinian.

Example 2.4. (1) Let R be a commutative local ring whose Jacobson radical
J is not finitely generated and J2 = 0. Then J is a semisimple R-module. We
can easily see that, s.s.dim(RR) = 2. But the R-module RR is not artinian (see
[2, Example 3.16]).

(2) Let R and S be two rings and RMS be a bimodule such that R is right
artinian and (M ⊕S)S is a semisimple module which is not artinian. Then the
ring T = (R M

0 S ) as a right T -module has semisimple dimension but T is not a
right artinian ring. This can be seen immediately from Proposition 2.2 and the
fact that every right ideal of T is of the form J1⊕ J2, where J1 is right ideal of
R, J2 is a submodule of (M ⊕ S)S and J1M ≤ J2 (see [6, Proposition 1.17]).

In the following proposition, we characterize artinian modules in terms of
having semisimple dimension and finite uniform dimension.

Proposition 2.5. An R-module M has semisimple dimension and finite uni-
form dimension if and only if it is an artinian module.

Proof. (⇒) Let M be an R-module with finite uniform dimension u.dim(M) =
m and consider a descending chain M1 ≥ M2 ≥ · · · of submodules of M .
By Proposition 2.2, there exists n ≥ 1 such that Mj is a direct summand of
Mi for all j ≥ i ≥ n. Thus there exist submodules K1, . . . ,Km−1 such that
K1 ⊕ K2 ⊕ · · · ⊕ Km−1 ⊕Mn+m = Mn. But since u.dim(Mn) ≤ m, we have
Mt = Mn+m for all t ≥ n+m and so M is artinian.

(⇐) The assertion holds by Corollary 2.3 and [9, Theorems 31.1 and 21.3].
�

In the following example, we show that finiteness of uniform dimension in
the above proposition can not be removed.

Example 2.6. Let P be the set of all prime numbers and M = ⊕p∈PZ/pZ.
Then MZ has semisimple dimension 1, but it is not artinian.

For a right R-module M , we say that M is of finite length if it has a com-
position series. A right R-module M is of finite length if and only if M is
both right noetherian and right artinian. The length of any two composition
series of MR are the same and it is said to be the length of MR and is denoted
by length(M). A module of finite length obviously has semisimple dimension.
The following proposition shows a relation between semisimple dimension of a
module M with finite length and length(M).
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SEMISIMPLE DIMENSION OF MODULES 5

Proposition 2.7. Let M be an R-module with semisimple dimension. If M is
a noetherian module, then we have the following:

(1) M is an artinian module.
(2) s.s.dim(M) ≤ length(M).
(3) If M 6= 0, then length(M)− u.dim(M) + 1 ≤ s.s.dim(M).
(4) If M is uniform, then s.s.dim(M) = length(M).
(5) For an exact sequence 0 → N → M → M/N → 0 with M 6= 0,

s.s.dim(N) + s.s.dim(M/N) ≤ s.s.dim(M) + u.dim(M)− 1. In partic-
ular, if N and M/N are uniform, then s.s.dim(N) + s.s.dim(M/N) =
s.s.dim(M).

Proof. (1) By Proposition 2.5, M is artinian.
(2) We prove this part by induction on length(M) = n. The case n = 1

is trivial. Now let n > 1 and K be a proper submodule of M . Then, by
assumption, s.s.dim(K) ≤ length(K) < length(M). Now using Remark 2.1,
s.s.dim(M) ≤ length(M).

(3) Set length(M) = n and u.dim(M) = m. Since M is artinian, we have
soc(M) ≤e M . Hence length(M/soc(M)) + u.dim(M) = length(M). Now we
consider the chain soc(M) = M1 � M2 � · · · � Mn−m−1 � Mn−m = M such
that Mi/Mi−1 is simple for every 2 ≤ i ≤ n−m. Thus we have M2 ∈ X2, . . . ,
Mn−m ∈ Xn−m. This shows that s.s.dim(M) ≥ n−m+ 1, and so the assertion
holds.

(4) follows immediately from (2) and (3).
(5) It is well-known that length(N) + length(M/N) = length(M). On the

other hand, by (2) and (3), we have s.s.dim(M) ≤ length(M) ≤ s.s.dim(M) +
u.dim(M)− 1. Thus we have

s.s.dim(N) + s.s.dim(M/N) ≤ length(N) + length(M/N)

= length(M)

≤ s.s.dim(M) + u.dim(M)− 1,

as desired. The last statement follows immediately from (4). �

Now we give an example showing that the converse of Proposition 2.7 (part
(1)) does not hold.

Example 2.8. For Z-moduleM = Zp∞ , it can be easily seen that s.s.dim(M)=
ω since every non-zero submodule of M is of the form Ki={m/pi + Z : m ∈Z}
for some i ∈ N. Therefore M is artinian as a Z-module. However, it is not
noetherian.

Corollary 2.9. If a non-zero R-module M is of finite length and M = M1 ⊕
· · · ⊕Mn, then

s.s.dim(M1) + · · ·+ s.s.dim(Mn) ≤ s.s.dim(M) + u.dim(M)− 1.

In particular, in case M is a uniform or a semisimple module, then the equality
holds.
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6 B. AMIRSARDARI AND S. BAGHERI

Proof. The proof follows immediately from part (5) of Proposition 2.7. �

Lemma 2.10. If a finitely generated module M has semisimple dimension and
M ∼= M ⊕N for some module N , then N has finite length.

Proof. First we show that N is noetherian. If N1 is a submodule of N that is
not finitely generated, then M contains a submodule K1 isomorphic to M⊕N1

which is not finitely generated. Since K1
∼= M ⊕N1, there is a submodule K2

of K1 isomorphic to M . Continuing this process in a similar way, we obtain a
chain M ≥ K1 ≥ K2 ≥ · · · such that Ki

∼= M ⊕ N1 is not finitely generated
for i odd, and Ki

∼= M for i even. But M is finitely generated with semisimple
dimension, which gives us a contradiction. Thus N is noetherian. Now, by
Proposition 2.7, N is also artinian, and so N has finite length. This completes
the proof. �

We know that every artinian module has non-zero socle. In the following
lemma we show that this is the case for every module with semisimple dimen-
sion.

Lemma 2.11. For a non-zero R-module M with semisimple dimension the
following assertions hold:

(1) If s.s.dim(M) = γ, then for any ordinal β with 0 ≤ β ≤ γ, there is a
submodule L of M such that s.s.dim(L) = β.

(2) M has non-zero socle.

Proof. (1) We prove this part using transfinite induction on s.s.dim(M) = γ.
The assertion is trivial for the case γ = 1. For γ ≥ 1 let 0 ≤ β < γ. Then by
Remark 2.1, there exists a submodule K of M which is not a direct summand
of M and β ≤s.s.dim(K). As β ≤s.s.dim(K) < γ, using induction hypothesis,
there is a submodule L of K such that s.s.dim(L) = β.

(2) It is clear by part (1). �

Lemma 2.12. For each ordinal γ, being of semisimple dimension γ is a Morita
invariant property for modules.

Proof. This can be easily seen using the definition of semisimple dimension and
[1, Propositions 21.7 and 21.8]. �

3. Rings whose modules have semisimple dimension

In this section we investigate the rings whose modules have semisimple di-
mension using our basic results in the last section. The following proposition
gives us examples of modules which do not have semisimple dimension.

Proposition 3.1. Let D be a ring. Then D is a division ring if and only if D
is a domain and has semisimple dimension as a right D-module .

Proof. It is enough to prove the “if” part. We claim that D is a principal
right ideal domain. Let on contrary that there is a non-cyclic right ideal I of
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SEMISIMPLE DIMENSION OF MODULES 7

D. For a non-zero element x ∈ I, let J1 = xD. It is clearly isomorphic to D.
Therefore, there is a right ideal J2 of D with J2 ∼= I and J2 ≤ J1. Now consider
again a cyclic right ideal J3 contained in J2 and by continuing this process in
a similar way, we have a chain J1 ≥ J2 ≥ · · · of right ideals of D where for
each odd integer i, Ji is cyclic and for each even integer i, Ji is not cyclic. Now
using Proposition 2.2, we see that, for some n, Jn+1 is a direct summand of
Jn, a contradiction. This means that D is a principal right ideal domain and
so, by Proposition 2.7, D is right artinian. Now by [5, Corollary 4.18], D is a
division ring. �

For a ring R, Q = Qmax(R) denotes the maximal right quotient ring of R.
In case R is a right non-singular ring, the maximal right quotient ring Q of R
is just the injective hull of RR, E(RR) (see [4, Corollary 2.31]).

Lemma 3.2. For a right non-singular ring R let Q be its maximal right quo-
tient ring and M be a right Q-module. If M is a non-singular right R-module,
such that M has semisimple dimension as a right R-module, then M has also
semisimple dimension as a right Q-module.

Proof. Every chain M ≥ M1 ≥ M2 ≥ · · · of Q-submodules of M , it is also a
chain of R-submodules of M and thus, for some n, Mj is a direct summand of
Mi for all j ≥ i ≥ n. Fix i, j for j ≥ i ≥ n. Hence there is an R-submodule K
of Mi such that Mj ⊕K = Mi. It is enough to show that K is a Q-module.
If q ∈ Q and t ∈ K there is an essential right ideal E of R such that qE ≤ R.
On the other hand, tq = mj + k with mj ∈ Mj and k ∈ K. Now we have
(tq − k)E = 0. Since M is right non-singular, tq = k. Thus K is a Q-module,
and so by Proposition 2.2, the assertion holds. �

Theorem 3.3. Let Q be the maximal right quotient ring of a semiprime right
non-singular ring R. If Q has semisimple dimension as an R-module, then R
is a semisimple artinian ring.

Proof. By Proposition 2.5, it is sufficient to prove that RR has finite uniform
dimension. As QR has semisimple dimension, RR itself and every right ideal I
of R have semisimple dimension. Therefore, every non zero right ideal contains
a minimal submodule (see Lemma 2.11). Now [4, Theorem 3.29] implies that
the maximal right quotient ring Q of R is a product of endomorphism rings of
some right vector spaces, say Q =

∏
i∈I Qi, where Qi = End(Vi). As RR is

right non-singular, QR is also non-singular and so, using Lemma 3.2, QQ has
semisimple dimension. At first we claim that each Vi is a finite dimensional
vector space. Let on contrary Vj be an infinite dimensional vector space and
Qj = End(Vj) for some j. Hence, Qj ∼= Qj × Qj . Now let ι : Qj −→ Q
be the canonical embedding. Then ι(Qj) is a right ideal of Q and we obtain
an isomorphism Q ∼= ι(Qj) × Q of Q-modules. Thus there are right ideals
T1 and T of Q such that Q = T1 ⊕ T and we have Q-isomorphisms T1 ∼= Q
and T ∼= ι(Qj). Now since Vj is an infinite dimensional vector space, then
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8 B. AMIRSARDARI AND S. BAGHERI

its endomorphism ring Qj = End(Vj) has a right ideal which is not principal,
namely its socle. So ι(Qj) and thus T contains a non-cyclic right ideal of Q
and since T ∼= Q/T1, there exists a non-cyclic right ideal of Q, say K1 such
that Q ≥ K1 ≥ T1. Now T1 is isomorphic to Q. So we can have a descending
chain Q > K1 > T1 > K2 > T2 > · · · of right ideals of Q such that Ti are cyclic
but Ki are not cyclic. This is a contradiction. So all Qi are endomorphism
ring of finite dimensional vector spaces. Now to show that R has finite uniform
dimension it is enough to show that the index set I is finite. If I is infinite,
there exist infinite subsets I1 and I2 of I such that I = I1 ∪ I2. and I1 ∩ I2 is
empty. Let T1 =

∏
i∈I Ni such that Ni = Qi for all i ∈ I1 and Ni = 0 for all

i ∈ I2. Similarly let T =
∏
i∈IMi such that Mi = Qi for all i ∈ I2 and Mi = 0

for all i ∈ I1. Then T1 and T are right ideals of Q and Q = T1⊕T . T contains
a right ideal of Q which is not cyclic, for example ⊕i∈IMi. Since T ∼= Q/T1,
there exists a non-cyclic right ideal K1 of Q such that Q ≥ K1 ≥ T1. Note
that T1 is a cyclic Q-module and because I1 is infinite, the structure of T1 is
similar to that of Q. We can continue in this manner and find a descending
chain of right ideals of Q such that Ki are non cyclic Q-modules and Ti are
cyclic Q modules, which is a contradiction. Therefore I is finite and R must
have finite uniform dimension. Now by Proposition 2.5 and [5, Corollary 4.18],
R is a semisimple artinian ring. �

We finish this paper with the following interesting results.

Proposition 3.4. Let an R-module M has semisimple dimension. Then for
every descending chain of submodules M1 ≥M2 ≥ · · · , there exists n ≥ 1 such
that Mi/Mj is a semisimple R-module for all j ≥ i ≥ n.

Proof. By Remark 2.1, there exists n ≥ 1 such that Mj is a direct summand of
Mi for all j ≥ i ≥ n. Fix i, j with j ≥ i ≥ n. We show that every submodule
K/Mj of Mi/Mj is a direct summand. Let n be the same in proof of the
Proposition 2.2. Thus s.s.dim(K) = s.s.dim(Mi), and so by Remark 2.1 there
exists a submodule T of Mi such that K⊕T = Mi. By property of modularity,
K ∩ (T +Mj) = Mj and hence we have K/Mj ⊕ (T +Mj)/Mj = Mi/Mj . Now
by [9, Theorem 20.2], Mi/Mj is semisimple for all j ≥ i ≥ n and hence the
assertion holds. �

Corollary 3.5. The following assertions are equivalent for a ring R.
(1) R is semisimple artinian.
(2) Every right R-module has semisimple dimension.
(3) Every left R-module has semisimple dimension.
(4) The right R-module ⊕∞i=1R has semisimple dimension.
(5) The left R-module ⊕∞i=1R has semisimple dimension.

Proof. (1)⇒ (2)⇒ (4) are clear.
(4)⇒ (1) Consider the descending chain

⊕∞i=2R ≥ ⊕∞i=3R ≥ · · ·
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SEMISIMPLE DIMENSION OF MODULES 9

of submodules of ⊕∞i=1R. Since the right R-module ⊕∞i=1R has semisimple
dimension, by Proposition 3.5 there exists n such that, ⊕∞i=nR/⊕∞i=n+1 R is a
semisimple module. This shows that R is a semisimple artinian ring.

(1)⇔ (3)⇔ (5) are obtained symmetrically to (1)⇔ (2)⇔ (4). �
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