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ON SOME DIFFERENTIAL SUBORDINATION INVOLVING
THE BESSEL-STRUVE KERNEL FUNCTION

MOHAMMED AL-DHUAIN AND SAIFUL R. MONDAL

ABSTRACT. In this article we study the inclusion properties of the Bessel-
Struve kernel functions in the Janowski class. In particular, we find the
conditions for which the Bessel-Struve kernel functions maps the unit disk
to right half plane. Some open problems with this aspect are also given.
The third order differential subordination involving the Bessel-Struve ker-
nel is also considered. The results are derived by defining suitable classes
of admissible functions. One of the recurrence relation of the Bessel-
Struve kernel play an important role to derive the main results.

1. Introduction and preliminaries
1.1. Bessel-Struve Kernel functions

Consider the Bessel-Struve kernel function S,  defined on the unit disk
A={z:|z| <1} as

(1.1) Sar(2) 1= ju(iN2) — iha(iX2), a> —%, Nec,
where, jo(2) := 27T (a 4+ 1)Jo(2) and hy(2) := 2%27°T (a + 1)H,(2) are re-
spectively known as the normalized Bessel functions and the normalized Struve
functions of first kind of index «. The Bessel-Struve transformation and Bessel-
Struve kernel functions are appeared in many article. In [13], Hamem et al.
studies an analogue of the Cowling-Price theorem for the Bessel-Struve trans-
form defined on real domain and also provide Hardy’s type theorem associated
with this transform. The Bessel-Struve intertwining operator on C is consid-
ered in [10]. The Fock space of the Bessel-Struve kernel functions is discussed
in [11].
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The kernel z + S, a(2), A € C is the unique solution of the initial value
problem

(1.2) Lou(z) = N2u(2), u(0) =1,4/(0) = m

Here £, , @ > —1/2 is the Bessel-Struve operator given by

d?u 20+ 1 (du du
(F0-50)

(1.3) Lo(u(z)) := ﬁ(z) + %(z) -

Now, the Bessel functions and the Struve functions of order a respectively
have the power series

z

) o o)
P& =2 imainsy M RS S e D)

This implies that S, \ possesses the power series

. T(a+1)D(2L
(14) Sa,A(Z) = Z ('F TL) ( 5 )1 4
o Vn! (§+a+ )
The kernel S, also have the integral representation
M(a+1) [ 2va—1 Azt
(1.5) Sen(2) i= 7/ (1 2)a—deretgy
Val(a+ 1) Jo

Now from (1.2) and (1.3) it is evident that S, » satisfy the differential equation
(1.6) 2207 (2) 4+ (20 4+ 1)2U'(2) — 2A%U(2) = 2 M,

where M = 2AT'(a + 1) (7 D(a + 3)) 7.

It can be shown that S, ;1 = S, satisfy the recurrence relation
(1.7 28 (2) = 2a84-1(2) — 2a84(2).
1.2. Differential subordinations

In this sections a details introduction about the classes of univalent functions
theory, admissible functions and fundamental results about the differential sub-
ordination of different orders are given. The differential subordinations and its
application are mainly encompassed the first order and second order differential
subordination till the introduction of the third order differential technique by
Antonino and Miller [9].

Let A denote the class of analytic functions f defined in the open unit disk
A normalized by the conditions f(0) =0 = f’(0) — 1 and have the form

(1.8) fz)=2+ Z an12™
n=1

If f and g are analytic in A, then f is subordinate to g, written f(z) < g(z),
if there is an analytic self-map w of A satisfying w(0) = 0 and f = g o w. For
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—1 < B < A <1, let P[A, B] be the class consisting of normalized analytic
functions p(z) =1+ c1z+ -+ in A satisfying
14+ Az
14+ Bz’
For instance, if 0 < 8 < 1, then P[1 — 28, —1] is the class of functions p(z) =
1+ ¢z + - satisfying Rep(z) > 8 in A.

The class S*[A, B] of Janowski starlike functions [14] consists of f € A
satisfying

2f'(2)

f(z)
For 0 < 8 <1, 8*[1 — 28,—1] := §*(B) is the usual class of starlike functions
of order 8; S*[1 — B,0] := 85 = {f € A: [2f'(2)/f(2) = 1| < 1- B}, and
S*[B, =] =8Bl ={f € A:[2f"(2)/f(2) — 1| < B|zf'(2)/f(2) + 1|} These
classes have been studied, for example, in [1,3]. A function f € A is said to be
close-to-convex of order 8 [12,16] if Re (2f/(2)/g(z)) > B for some g € §* :=
§*(0).
Let H(A) be the class of functions which are analytic in A. For n € N :=
{1,2,3,...} and a € C, consider the class H[a, n] defined as

(1.9) Hla,n] :={f € H(A): f(2) = a4 anz" + ans12" T 4},

and suppose that Hy = H[0, 1].

The theory of the differential subordination in A was introduced by Miller
and Mocanu [16] and subsequently many researcher either apply this concept to
study the geometric properties of analytic functions defined on A and developed
or reproduced several other theory for subclasses of the univalent functions
theory (See [2,4-8] and references their in).

Following result is important to show that the Bessel-Struve kernel have a
relation with Janowski class.

Lemma 1.1 ([15,16]). Let Q C C, and ¥ : C* x A — C satisfy
U(ip,o,u+iv;z) €

whenever z € A, p real, 0 < —(1+ p?)/2 and o + p < 0. If p is analytic in A
with p(0) = 1, and V(p(2), 2p'(2), 2%p"(2);2) € Q for z € A, then Rep(z) > 0
in A.

p(z) <

€ P[A, B].

Theory of the second-order differential subordinations in A have extended
to third-order differential subordinations by Antonino and Miller [9]. They
determined properties of analytic functions p in A that satisfy the following
third order differential subordination:

{¥(p(2), 20 (2), 2°p" (2), 2" (2); 2)} C Q,

where, 2 € A, Q is any set in C, and ¢ : C* x A — C.
Next we write down few important definition and results from [9] which are
required in sequel.
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Definition 1.1 ([9, p. 440]). Let ¢ : C* x A — C and h be univalent in A. If
p is analytic in A and satisfies the third-order differential subordination

(1.10) D(p(2), 20 (2), 2°p" (2), 2% (2); 2) < h(2),

then p is called a solution of the differential subordination. A univalent function
q is called a dominant of the solutions of the differential subordination or more
simply a dominant if p < ¢ for all p satisfying (1.10). A dominant ¢ that
satisfies ¢ < ¢ for all dominant of (1.10) is called the best dominant of (1.10).
Note that the best dominant is unique up to a rotation of A.

Definition 1.2 ([9, p. 441]). Let Q denote the set of functions @ that are
analytic and univalent on the set A\ E(q), where

E(q) ={C€0A: lim q(z) = oo},

and are such that
min |¢'(C)| = p >0
for ¢ € A\ E(q). Further, let the subclass of Q for which ¢(0) = a be denoted
by Q(O) = Q().
Definition 1.3 ([9, p. 449]). Let Q be any set in C, ¢ € Q and n € N\ {1}. The

class of admissible function ¥,,[(2, q] consists of those functions ¢ : C*x A — C
that satisfy the admissibility condition: 1 (r, s, t,u; z) ¢ €, whenever

BN

and

u a"(©)
Re (—) > m? R 1
o(3) 2o (S
where 2 € A, ( € A\ E(q), and m > n.
Theorem 1.1 ([9, p. 449]). Let p € H[a,n] with n > 2. Also let ¢ € Q(a) and
satisfy the following conditions:

() o0 w20

where z € A, ¢ € A\ E(q), and m > n. If Q is any set in C, ¢ € ¥,[Q,q] and
b(p(2), 20 (2), 2%p" (2), 2°p" (2); 2) € Q,

— )

then p(z) < q(z).

Recently, Tang and Deniz [17] applied the above third-order differential sub-
ordination concept to an operator involving the generalized Bessel functions by
considering suitable class of admissible functions.

In Section 2, we obtain the sufficient condition for which the Bessel-Struve
kernel functions have relation with the functions of the Janowski class. The
classes of admissible functions applicable for the Besse-Struve kernel function
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in A are introduced in Section 3 and then results related to the third order
differential subordinations involving this function are derived.

2. Inclusion of Bessel-Struve kernel in the Janowski class

Theorem 2.1. Let —1 < B < 3 — 2v/2 ~ 0.171573. Suppose B < A < 1, and
A, a € R satisfy

(2.1) a > max {07 %\ ‘)‘(1+A)(1+B)+M(1+B)2
10> - 25 [ta(M(A + B) + 2MB) + X (A1 + 4) + M(1 + B))|

A-B
Further let A, B, a and X\ satisfy either the inequality
1-B

2 _n2 _ _
(22) +20lB > 2 (1-B>)(A\(1 A)+]\(/I}£1_B?2))(A(1+A)+M(1+B))

whenever
(23)  |4a(MA+ B)+2MB)(1—B)+ (14 B)*(A\(1+ A) + M(1 + B))|
> 2)\3(1 — B)(A - B)
or the inequality
(2.4)
(4aA(A(A + B) + 2MB) + B ()\2(1 + A)(1 + B) + AM(1 + B)?))”
< 4((N*(1— AB) + AM(1 — B*)? — (\?(1 — A)(1 — B) + AM (1 — B)?%)

2
(R2(1+A)(1+B) + AM(1 + B)?) (40 + 2015 — (LUAZEMOED )y,

whenever

(25)  |[4a(MA+ B)+2MB)(1-B)+ (14 B)*(A1+ A)+ M(1+ B))|
< 2)3(1 — B)(A - B).

If 14+ B)Saa(z) # (14 A), then Sa.a(2) € P[A, B].

Proof. Define the analytic function p: A — C by

(1-4) = (1= B)Sanx(2)

(1+A)—(1+B)San(z)’

p(2) =~

Then

_ (1=A)+(1+A)p(2)
(2.6) Sa(?) = B F T BIPG)

. 2(A=B)p'(2)

(2.7) Saa(2) = ((lfB)+(H)>pB()P(Z))27

(2.8) S |\ (2) = 2A=BUA=B)+(+B)p(e)p (:)—4(14 B)A=B)p (2)
. a7 '

((1-B)+(1+B)p(2))*
Using (2.6)—(2.8), the Bessel-Struve differential equation (1.6) yields

B
2" (2) — pee (7P ()7 + (20 + 1)2p/(2)
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2(1—-A A)p(z — z — 2))?
(29) — ((A (1A AW (=B ) (LB EAM (1= B (1 Blo() >z _o.

With Q = {0}, define ¥(r, s,t; z) by

U(r,s, t;2) ==t — %52 + (a+1)s
M (1-A)+(14+A)r)((1=B)+(14+B)r)+AM((1—B)+(1+B)r)?
(2.10) _(( (= Ay A (=B 0PI MM (1= B 0B >Z

It follows from (2.9) that W(p(z), 2p'(2), 2%p" (2); z) € Q. To show Rep(z) > 0
for z € A, from Lemma 1.1, it is sufficient to establish Re U (ip, o, u+iv; z) < 0
in A for any real p, 0 < —(1+ p?)/2, and o + p < 0.

With z = x + iy € A, it readily follows from (2.10) that

Re U (ip, 0, 1+ iv; z)

2(1—B? A2(1—AB)+AM (1—B?
ZM—WU%L(?OHFUUJF( ( (f);tg)( ))Py

A2(1—A)(1-B)—(1+A)(1+B)p>)+AM ((1-B)*>—(1+B)?p?
(2.11) ,( (( )( )—( )(2(A)_pB)) (( ) —( )”))x.

Since 0 < —(1 + p?)/2, and B € [-1,3 — 2V/2],
2(1 — B?) ) 2(1 — B?) (14 p?)? 1+B
A-BP+(1+B2° “(-BP+(1+B’~ 4 -20-B)
Thus

Re ¥ (ip, 0, u+ iv; z)

< 200 — XU=A=B)- (AU BIF M- BP~0+B)6)

(A-B)
A2(1—AB)+AM(1—B?) B
+ A-B Py — 2(11J:B)
< —a(l +p2) _ /\2((1—A)(1—B)—(1+A)(1;Ei)fJ;))+)\M((1—B)2—(1+B)2p2)m
N (1-AB)+IM(1-B?
+ 2 (,21—3) ( ),Oy - 2(11t%)
=pp’ +ap+r1=Qp),
where
N(1+A)(1+4 B)+ AM(1+ B)?
p1=—a+ 2(A— B) x,
B A2(1 — AB) + A\M (1 — B?)
ql - (A _ B) y?
1+ B A(1—A)(1—B)+ AM(1— B)?
TN = —& — — .
C TG ) 2(A— B) *

Condition (2.1) shows that

A1+ A)(1+ B) + AM (1 + B)?
2(A— B) “

p1=-—a+
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IN[[A1+A)(1+ B)+ M(1+ B)?
<—(a—2‘ 1-B )<0.

Since maﬁi{plpz +qip+riy = (Apirs — ¢7)/(4p1) for p; < 0, it is clear that
pe
Q(p) < 0 when

(/\2(1 — AB) + AM(1 — B?)>2y2

g (2a+ <$(_1i4)(1 J;B_);)\M(lJrB)Q)x)
. <2a ig’ ()\2(1—A)(l—AB_);)\M(l—BF)x)’

|z, |y| < 1. As y? < 1 — 22, the above condition holds whenever
N(1— AB) + AM(1 — B?)\?
(RAD) A B

) (2a+ <$(_1i4)(1 J;B_);)\M(l—kB)z)x)
. (—za— ig_ (Az(l—A)(l—AB_);)\M(l—BF)w)’

that is, when
(2.12)

A2(1—AB)+AM(1-B?)2—(\*(1-A)(1-B)+AM(1-B)*>)(XN*(1+A) (1+B)+AM(1+B)?) 2
(A—B)2 z

+ 245 (— 4aAM(A + B) +2M B)) - AEEEE (A1 + A) + M(1+ B)))z
2(1—A _B2)\2
+4a2+2a%—()‘(1 let)\BM(l B)) > 0.

To establish inequality (2.12), consider the polynomial R given by

R(z) :=ma*+nx+r, |z| <1,
where
m = (A2(1—AB)+AM(1—B?))>—(\>(1—A)(1—B)+AM (1—B)?)
= (A-B)?
_ (PA-AB)HAM(1=B?))’-N(1-B*)A(1-A)+M(1-B)) A(1+A)+M(1+B))
o (A—B)? )

(A2(1+A)(1+B)+AM (14 B)?)

n = 2 (= da(MA+ B) + 2MB)) — T (31 + 4) + M(1+ B))),

e A2 1+B A2(1—AB)+AM(1—B?)\2
ri=4a® + 20175 — ( A-B )"

The constraint (2.3) yields |n| > 2|m|, and thus R(z) > m + r — |n|. Now the
inequality (2.2) implies that

R(z) > m+1r—|n|

_ (A2(A-AB)+AM(1-B?))?2-)\2(1—-B?*)(A(1—A)+M(1—B))(A(1+A)+ M (1+B))
(A-B)?
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2 1+B A2(1-AB)+AM(1—B?)\2
+40” +2a71E8 — ( e )

— LU= 4a(\(A+ B) +2MB))— SEEZ (\(1 4 A) + M(1 + B)))|

= 40? — L1 (—4a(MA + B) + 2M B))
— WEBZ(\(1 4 A) + M(1+ B)))|

+ 20[% . (AZ(I—A)(1—B)+)\M(1—(B£i)](3>\)22(1+,4)(1+B)+AJV[(1+B)2 > 0.

Now considers the case of the constraint (2.5), which is equivalent to |n| <
2m. Then the minimum of R occurs at = —n/(2m), and (2.4) yields
dmr — n?
R > —>0.
(:E) - 4dm -
Evidently ¥ satisfies the hypothesis of Lemma 1.1, and thus Re p(z) > 0,
that is,

(I1-A4A)—(1-DB)Sa(z) 14z
< }
(I1+A4)—(1+DB)Sa(z) 1-=z
Hence there exists an analytic self-map w of A with w(0) = 0 such that
(1-A)—(1-DB)sa(2) 1+w(z)
(1+A)— (1+B)Sa(z) 1—w(z)’
which implies that S, (2) < (1 + Az)/(1 + Bz). O

Considering A = A = —B = 1, following result can be obtain from Theorem
2.1.

Corollary 2.1. For a € [0,ap] U [3/2,00), Re(Sa(2)) > 0. Here ag = 0.5 is
the positive root of the identity 4al'(a + 1) = /7l(a + 1/2).

This result along with the recurrence relation (1.7) gives that

Re (zs;(z) —;janz)) S 0.

In particular, the function 28, /5(2) is close-to-convex functions with respect to
z, and hence it is univalent.

Theorem 2.2. Let 3 —2/2< B < A<1 and A, a € R satisfy

A[A1+ A)(1+ B) + M(1+ B)?
(2.13) aZmax{O,;’ (1 +A) _;7);_ (1+5B) }
Suppose A, B, a and X satisfy either the inequality
(2.14)

(a*(A— B)? = A(A — B)|a(\A + B) + 2M B)
+ BB (AL + A) + M(1+ B))| + 8221 BUAZEY
(A(1—A)(1— B)+AM(1 - B)*)(\(1 + A)(1 + B) + AM (1 + B)?)

1
24
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whenever
(2.15) (A— B) ‘aA()\(A + B) +2MB) + AP (\(1 4 4) + M (1 + B))‘
> %2 (M1 — AB) + M(1 — B?)* — (1 - B®)(A\(1 — A)

+M(1-B))(A1+A)+ M1+ B))]|,
or the inequality
(2.16)

(a ()\(A +B)+ 2MB> + 200 ()\(1 +A)+ M1+ B)>)2

< (M1 = AB) + M(1 — B?)? — (1 — B)(A(1 — A) + M(1 — B))

2 _ _n2 2
(M1 +A) + M1+ B)) (a2+8a3(11;]§)3 _ (A o T >> >

whenever
(2.17) (A— B) ’a/\()\(A + B) +2MB) + XD (\(1 4 4) + M (1 + B))‘
< %2 (M1 — AB) + M(1 — B?)* — (1 — B®)(A(1 — 4)

+M(1 —B))()\(l+A)+J\/.I'(1—4—B))|7
If (14 B)Sa(z) # (1 4+ A), then S,(z) € P[A, B].
Proof. Proceeding similarly as in the proof of Theorem 2.1, consider Re ¥ (ip,
o, p+iv;2) as given in (2.11). For 0 < —(1+p?)/2, p € R, and B > 3 —2V/2,
2(1 — B?) ) 2(1 — B?) (14 p?)? . 8B(1-DB)
(1-BR+(1+B)22° = (1-B2+(1+B)22 4 = (1+B)3
With z =z + iy € A, and pu+ o <0, it follows that
Re ¥ (ip, o, u+iv; z)
— 21— _n2
—a(l +p2) . 8?1&131)93) + (/\ (1 ABf)l-l;)I\BM(l B )) oy
— s (31— A)(1 = B) - (1 + A)(1 + B)p?)
+AM((1 - B)? — (1+ B)*p*)) z
= p2p” + @2p + 72 7= Qu(p),

AN

where
A2(14+A)(14+B)+AM (14 B)?
Po=—a+ 1+ )(24(:47)1;) (1+B) z,
A2(1—AB)+AM (1—B?
gy = XUABRIMA-BT),,

_ 1-B A2(1—A)(1—B)+AM (1—B)?
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In the proof of Theorem 2.1, it can be observed that the constraint (2.15)
implies pa < 0. Thus Q1(p) < 0 for all p € R provided ¢3 < 4pars, that is,

A2 (1—ABYAM(1—B*)\ 2 2
A-B Y

< (—2a+ A2(1+A)(1:@§AA1(1+B)2$)

B A(1-A)Q1-B)+AM(1-B)?
x (~20~16B 7 NIZBIAMO=DY )

EENE )

|z|, J[y] < 1. With y? < 1 — 22, it is sufficient to show

(Az(lfAszxtAM(lfBQ))2 (1—22)

< (—2a+ (1+A)(1+AB)§)\M(1+B)2 )

B(1-B)  X’(1-A)(1-B)+AM(1-B)*
X ( — 1675 A-B m) ’

for |z| < 1. The above inequality is equivalent to showing
(2.18) Ri(2) := miz? + max +7r1 >0,
where

mi = =gy (A(1 = A)(1 = B) + AM(1 - B 2) (N(1+A4)(1+B)

A2(1—AB)+AM(1—B?)
+)\M(1+B)2))+( (- ()-tB =

n1 = 575 (40AA(A + B) + 2M B) + X252 (32 (1 + A) + AM(1 + B)),

402 + 320 20-8B) _ (A2(1—AB)+>\M(1—BQ)>2'

1 (1+B)3 A—B
If (2.15) holds, then |ni| > 2|m4]|. Since R; is increasing, then Ry (z) > mj+
— |n1|, which is nonnegative from (2.14). On the other hand, if (2.16) holds,
then |n1| < 2|my|, Ri(z) > (4myry —n?)/4my, and (2.17) implies Ry (z) > 0.
Either case establishes (2.18). O

Remark 2.1. A graphical experiment using mathematica shows that Re(S4(2))
> 0 for all @ > 0 and z € A. But our computation restrict on [0, 1/2]U[3/2, 00).
Thus the result is open for a € (0.5,1.5).

3. Third order differential subordination for S,

In [17], an operator B¢ is defined by the Hadamard product of the generalized
Bessel functions ¢, . with an analytic functions f(z) = 2+ oo, a,2z"*!. Here
the generalized Bessel functions ¢, . have the power series representation

n4n n+1 b+1
@Pybyc() ‘Pnc Z+Z 47 (r ) H:erTE(C\Z.
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Thus,
1)"4"a, 12"t
4" (K)pn!

Bi(2) = pu,c(2) * f(z) = 2 + Z =
n=1

To study the third order differential subordination, several admissible classes
involving generalized Bessel functions are introduced in [17].

By adopting same technique as in [17], in this section, we studies the third
order differential subordination involving Bessel-Struve kernel functions. For
this purpose, we introduce an admissible class ®¢[€2, q] as follows:

Definition 3.1. Let Q be a set in C and ¢ € Qg N Hgy. The class of admissible
function ®,4[€, ] consists of those functions ¢ : C* x A — C that satisfy the
following admissibility condition

d)(ﬁl) /82a ﬁ37 /847 Z) ¢ Q
whenever

Bi=q©)  Br= qu’(C);ria;r 1)q(C)7

da(a+1)Bz+8a(a+1)Br—(4a”+8a+1)8 ¢qd"(©)
Re( 30t 1) (Ba—B) -+ 1) = mRe ( 70 T 1) ,

and

Re (8a(a271)ﬁ474a(a+1)(6a71)ﬁ3+2(a+1)(36042712a71)ﬁ2+(40a3+16a27180476)51 )

2(a+1)(B2—P1)
2 ¢*q" ()
= m Re( q’'(¢) )’

where z € A, o > 1, ( € 9A\ E(q) and m > 2.

Our first result give the sufficient conditions for the inclusion of S, in the
admissible class ®¢[€2,¢]. In this purpose, let define g, (2) := 284(z). Then a
calculation along with (1.7), yields the recurrence relation

(3.1) 28a(2) = 208a-1(2) + (1 — 20)ga(2),

which play the main role in this article. Now we will state and proof our main
results on differential subordination involving S,,.

Theorem 3.1. Let ¢ € $,[Q,q]. Suppose that q € Qo satisfy the following
inequalities:

¢q" (<) ga(2)
(32 Re( 7' (<) > =% g™
Forallz€ A and a > 1, if
(3.3) {o(gar1(2), 8a(2), 8a-1(2), Ba—2(2); 2} C 2,

then go+1(2) < q(2).
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Proof. Define the analytic function p in A as

(3.4) p(2) = gar1(2), a>1.

Differentiate (3.4) with respect to z. Then an application of (3.1) for o + 1
yields
2p'(2) + 2a+ 1)p(z
55) (5 = LG
Differentiate both side of (3.5) with respect to z and then multiply by z gives
22p"(2) + (20 +1)2p'(2)

2(a+1)

(3.6) 28, (2) =

Again use of (3.1) implies

220" (2) + dazp/(2) + (4a? — 1)p(z).

(37) gafl(z) = 4a(a + 1)

Similarly, it can be shown that

3 111 _ 2, 1/ 2_ Q. / 2_ —
(38) ga72(z) _ z2°p"(2)+(6a—1)z"p (z)+(128(;(a§izl)1)zp (2)+(4a”—1)(2x 3)p(z).

Now consider the four transformation ; : C* +— C, i = 1,2, 3, 4, as follows:

(i) fi(ry s, t,u) =,

.. s+ (a4 1)r
(ii) Ba(r, s,t,u) = arl
t +das + (4a? — Dr
(111) BS(Ta 57t7u) = 40((Oé(+ 1) ) )
u+ (6a — 1)t + (1202 — 8a — 1)s + (2a — 3)(4a? — 1)r

(iv) Ba(r, s, t,u) =

Define ¢ : C* — C as

(39) ’QZJ(T’,&t,’U,; Z) = ¢(51a527ﬂ3754;2)~
Then clearly

8a(a? — 1)

3,/

b(p(2), 20 (2), 2%p" (2), 2°P" (2); 2) = D(8at1(2),8a(2), 8a-1(2), 8a—2(2); 2)-
From (i)-(iv), it follows that
s =2(a+1)(B2 — A1),
t =4da(a+1)B3 + 8a(a +1)82 — (4a® + 8a + 1)1,
u=8a(a® —1)Bs — da(a+1)(6a — 1)B5 + 2(a + 1)(36a% — 12a — 1) fa,
+ (400 + 1602 — 18a — 6)5;.

Thus the admissibility for ¢ € ¥4[Q, ] as stated in Definition 3.1 is equivalent
to the admissible condition for ¢ € ¥,[€, ¢], n = 2 as given in Definition 1.3.
It is evident that the result follows from Theorem 1.1 provided the hypothesis
(3.2) hold. O
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Now consider the case, when Q # C is a simple connected domain, then
for some conformal mapping h of A to 2, we have Q = h(A). In this case the
class W4[h(A), q] is denoted as ¥4 [h, ¢] and the following result is an immediate
consequence of Theorem 3.1.

Theorem 3.2. Let ¢ € Og[Q,q|. Suppose that q € Qo satisfy the hypothesis
(3.2). Forallze A and o> 1, if

(3.10) {¢(g8a+1(2), 8a(2), 8a—1(2), Ba—2(2); 2} < h(2),
then go+1(2) < q(2).

If the behaviour of ¢ on A is not known, then Theorem 3.1 can be extended
as in the following result.

Theorem 3.3. Let Q € C and q be univalent in A with ¢(0) = 0. Suppose that
¢ € Dg[Q, qy] for some r € (0,1), where g-(z) = q(rz) satisfy

C%’(C)) ga(C)‘

(311 ve () 20 (g <m
Forallze€ A and a > 1, if

(3.12) (b(gaJrl(Z),ga(z),ga,l(z),gafg(z);z) €N

then go+1(2) < q(2).

Proof. Tt follows from Theorem 3.1 that g,.1(2) < ¢-(2). Now the result can
be deduced from the fact that ¢,(z) < ¢(z) for all fixed r € (0,1) and z € A. O

Our next result yields the best dominant of the differential subordination
(3.10).

Theorem 3.4. Let h be univalent in A, and let ¢ : C* x A — C and ¥ be
given by (3.9). Suppose that the differential equation

(3.13) U(q(2), 24 (), 2%q" (2), 2°¢" (2); 2) = h(2),

has a solution q(z) with q¢(0) = 0 and satisfies the condition (3.2).

If ¢ € O4lh,qr] and ¢(ga+1(2), 9a(2), ga—1(2), ga—2(2); 2) is analytic in A,
then (3.10) implies that ga+1(2) < q(2), and q is the best dominant.

Proof. From Theorem 3.1, it is evident that ¢ is a dominant of (3.10). Since ¢
satisfies (3.13), it is also a solution of (3.10) and therefore ¢ is dominated by
all dominant. This implies ¢ is the best dominant. O
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