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UPPER BOUND ON THE THIRD HANKEL DETERMINANT
FOR FUNCTIONS DEFINED BY RUSCHEWEYH
DERIVATIVE OPERATOR

TuGBA YAVUZ

ABSTRACT. Let S denote the class of analytic and univalent functions in
the open unit disk D = {z: |z| < 1} with the normalization conditions
f(0) = 0 and f’(0) = 1. In the present article, an upper bound for
third order Hankel determinant Hz3 (1) is obtained for a certain subclass
of univalent functions generated by Ruscheweyh derivative operator.

1. Introduction

Let D be the unit disk {z: |z] < 1}, A be the class of functions analytic in
D, satisfying the conditions
(1) f(0)=0 and f'(0) =1.

Then each function f in A has the Taylor expansion
(2) @) =2+ anz"
n=2

because of the conditions (1). Let S denote class of analytic and univalent
functions in D with the normalization conditions (1) .

The ¢'* Hankel determinant for ¢ > 1 and n > 0 is stated by Noonan and
Thomas [17] as

an, An+1  *° Oniq-1
An41
(3) Hg(n) =
Un+q—1 T Up42q—2

This determinant has also been considered by several authors. For example,
Noor [18] determined the rate of growth of H, (n) as n — oo for functions
f given by (1) with bounded boundary rotations. Ehrenborg [5] studied the
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Hankel determinant of exponential polynomials. The Hankel transform of an
integer sequence and some of its properties were discussed in Layman’s article
[13]. A classical theorem of Fekete and Szeg6 [6] is considered second Hankel
determinant Ho(1) = a3 — a3 for univalent functions. This functional corre-
sponds to the Hankel determinant with ¢ = 2 and n = 1. It is well known
that the sharp inequality ’ag — a%‘ <1 holds for f € S and given by (2). This
result is given in the article [4]. Further, Fekete and Szegd [6] introduced the
generalized functional, known as Fekete-Szeg6 functional, |a3 - ua§| where
is a real number. Hankel determinant in case of ¢ = 2 and n = 2 is known as
the second Hankel determinant, given by

a2 as

H2(2): asz a4

= Q204 — G,g.

In particular, sharp bound on |Hz (2)] is obtained by several authors for differ-
ent subclasses of univalent functions (See [8-11,16,23,25,26]).
The third order Hankel determinant is constructed in the case of ¢ = 3 and
n = 1, given by
ay az as
Hg(].) = | a2 a3 Qa4
as a4 G5
It is obvious that

Hs(1) = a3 (a2a4 — ag) — a4 (ag — asas) + as (ag = a%) .
By applying the triangle inequality, we obtain
(4) |H3(1)] < |aa| |agaq — a3| + |aa] |as — azas| + |as| |az — 3] .

Recently, many authors have considered to investigate an upper bound for
|H3(1)| of functions in different subclasses of univalent or p-valent functions
(See [1-3,19,20,24]).

[ee)

oo
Let f(z) =2+ Z anz™ and g(z) = 2+ Z bp 2™ be analytic functions in D.
n=2 n=2
The Hadamard product (convolution) of f and g, denoted by f x g, is defined
by
(5) (f*g)(z):erZanbnz”, zeD.
n=2
Let n € Ng = {0,1,2,...}. The Ruscheweyh derivative [21] of the n‘* order
of f, denoted by D" f (z), is defined by

" B z B I'(n+k)
6) D f(z)_m*f(z)—z+gr(n+1)(k_1)!akzk.

The Ruscheweyh derivative gave an impulse for various generalization of well
known classes of functions. By using the Ruscheweyh derivative, we can gen-
eralize the class of the starlike and convex functions, denoted by S* and C,
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which are defined as

(7) S*:{f(z)eS:Re(zf/(Z)>>0,ze]D)}

f(z)
and
(8) C:{f(z)eS:Re (1+Z}f,”(g)) >0, zeID)}.

The class R,, was studied by Singh and Singh [22], which is given by the fol-
lowing definition

2(D"f (2))
Dn f (2)
We denote that Ryg = S* and R; = C.
Fekete-Szegd problem was discussed for a certain subclass which includes R,,
in the paper [12]. On the other hand, the second Hankel determinant problem
of functions in R, is investigated in [25].
Motivated from the results in [2], [3], [19], and [20], we obtain an upper
bound for |H3(1)| for the functions belonging to the class R,,.

(9) Re >0, z€D.

2. Preliminary results

The following lemmas are required to prove our main results. Let P be the
family of all functions p analytic in D for which Re (p(z)) > 0 and

(10) p(z)=1+cr1z+caz+---.

Lemma 2.1 (Duren [4]). Ifp € P, then |cg| < 2 for each k € N. The inequality
is sharp for each k.

Lemma 2.2 (Grenander & Szegd, [7]). Let p € P. Then
(11) 20 =cf + (4—¢}) =,

(12) des=cl+2c1 (d—F)z—c1 (4—c})2® +2c1 (4—¢}) (1 = |x|2) z
for some x and z satisfying |x| <1, |z| < 1.

We obtain following lemma as a special case of the parameter of class of
functions defined in [12].

Lemma 2.3 ([12]). Let f € R,,. Then for p € R, we have

2 +2 +1
1) (nt+2) [3 - 2“%1} BSOS
2 2 41 3(n+1)
(13) |as — pa3| < 1) (nr2)° e Shs T
2 +2 3(n+1)
G EED |2 att — 3} vk T

For each p there exists a function in R, such that equality holds.
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Lemma 2.4 ([25]). Let the function f given by (2) be in the class in R,,. Then

1, n =0,

14 —a| < 5 n=1,
(14) Jazas = a3] < et
(n+1)*(n+2)*(n+3)’ ’

3. Main results

Before we get our main results, we need to obtain upper bounds for coeffi-
cients of functions in the class R,,.

Theorem 3.1. Let f(z) € R,,. Then all k € N, we have the following sharp
inequalities

k!

15 < .
(15) |ak|_(n+1)(n+2)---(n+k—1)
Proof. Let the function f € R,,. Define a function
(16) F(z) =D"f(2) :z—l—ZAkzk,

k=2
where
r k
(17) Ap = (k) k> A =1,

I'(n+1)(k—1)!
Then, there exists an analytic function p(z) € P in the unit disk D with p(0) = 1
and Re(p(z)) > 0 such that

2F'(2)

(18) P =)

Hence, we have from (10)

(19) ZJerAkzk{Z+2Akzk}x{l+20kzk}.
k=2 k=2 k=1

We need to use the principle of the mathematical induction to get desired
result.

For n =1, A; = 1. Assume that |4;| <1, 1=2,3,...,k — 1. After that, we
have to show that |Ag| < k. According to (19), we obtain the following relation
(20) (k} — 1)Ak =cp_1A1 +cp_2As+ -+ c1Ap_1.

Applying the triangle inequality with Lemma 1, we obtain

k—1
(k= 1) Akl < 22 |4 -
=1
According to our assumption, we get the following desired result
k!
(n+1(n+2) - (n+k-1)

lak| <
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This completes the proof. Il

We prove the following theorem by using the classical method of Libera and
Zlotkiewicz [14], [15].

Theorem 3.2. Let the function given by (1.2) be in the class R,. Then we
have the following sharp inequalities:
2, n =0,
4 n=1
(21) lagas — as| < 9v3’ g

4(5n+3) 2(5n+3)
ST Ty V 33y > L

Proof. By using the series expansion of F'(z) and p(z) in (19), equating coeffi-
cients in (20) yields

1
a2_n+1clv
1
22 = i
#2) “ (n+1)(n+2){62+cl}’
1
a4:

G DYy Cetlactal.

Hence, we get from (22)

(23) asaz — ag = A(n) {cico + ¢} — B(n) (2¢3 + 3c1co + 1) },
where
1

24 An) = ———
- ") (n+1)%(n+2)
and

1
(25) B(n):(213>7n20,1,2,....

Using (11) and (12) in (23) ,we get

c1 (4 —c3)2?
lasas — ag] = A(n) |3 (; - B(n)) S+ B(n)u

2

+

(1-5B(n))c; (4—ci)z— B(n)ey (4 —cf) (1 — |x|2> z

N |

Since the function p(e?z), (6 € R) is also in the class P, we assume that without
loss of generality that ¢; > 0. For convenience of notation, we take ¢; = c,
¢ € [0,2]. Applying the triangle inequality with the assumptions ¢; = ¢ € [0, 2],
|x] = p and |z| < 1, it is obtained that

1

e (4 — ) p2
lasas — ag] < A(n) {3 ‘ — B(n) u

3
¢’ + B(n) 5

2
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(26) +% (5B(n) — 1)c(4—c2)p+B(n)c (4—02) (1 —p2)}
= A(n)G(c, p).
We now maximize the function G(c, p) on the closed square [0, 2] x [0, 1].
9G(e.p) _ —B(n)e(4—c) p+ %6(4,62)
(27) dp . 2
_ 2
_n+36(4 ¢®) > 0.

Hence, G(c,p) can not have a maximum in the interior of the closed square
[0,2] x [0,1] . Moreover for a fixed ¢ € [0,2], we have

(28) Jnax, G(c,p) = G(c,1) = F(c).
One can obtain that
(29) lasas — aq| < A(n)F(c),
where
_3|l—n| 3 6B(n)—1 9

(30) F(c)—2(n+3)c + 5 c(4—¢c%).
Since

2, n =0,
(31) Fl(c) = 4 —3c?, n=1,

—3c2+2(6B(n) —1), n>1,
we have to consider following three cases:

Case 1. For n =0, F'(c) > 0. Hence F(c) < F(2). We get the following
result
(32) |a2a3 — a4| < A(O)F(Q) =2
This one coincides with the result for starlike functions in the article [2, The-
orem 3.3]. This inequality is sharp and the equality is obtained for the Koebe
function k(z) = ﬁ and its rotations.

Case 2. Let n = 1. After required calculations, it is obtained that F(c)
has a local maximum at ¢ = % Since F'(0) = F(2) = 0, it is easy to see that

F(e)<F (%) . Hence, we have the following sharp estimates which is stated
in [2]

(33) lagas — aq| < A1) F (%) = 9;\4/3

Case 3. Let n > 1. Then, F'(c) = 0 for ¢* = ./23(3?:33)). It is obvious
that F”'(¢) < 0. Then, F(c) has a local maximum at ¢ = ¢*. Since, F/(0) = 0,
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F(2) = %{31) and

F(c¥) 5n+ 3

2(5n + 3)

> 1 for all n > 1,

F2) 9n-1)Y\ 3(n+3)
we obtain
4(5n + 3)
— < A(n)F(c*) =
203 = aa < AF() = 3050 =5 )
This completes the proof of theorem. (I

By using above results in (4) together with the known inequalities given
by Lemma 2.3 and Lemma 2.4, after necessarily calculations we obtain the
following corollary.

Corollary 3.1. Let f(z) € R,,. Then

(34)  [Hs(1)]
16, n =0,
< 3t os =074, n=1,
- 4! 13n%4+39n4+8 | 4(5n43)(n4+2) /2(5n+3)
(n+1)3(n+2)3(n+3) { n A39nt8 4 3(n+3) 3(n+3) } , n>1

Remark 3.1. By choosing n = 0 and n = 1 in (34), we obtain sharp upper
bound for third hankel determinant of starlike and convex functions, respec-
tively. These results also agree with those considered by Babalola [2].
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