
Commun. Korean Math. Soc. 0 (0), No. 0, pp. 1–0

https://doi.org/10.4134/CKMS.c170081

pISSN: 1225-1763 / eISSN: 2234-3024

UPPER BOUND ON THE THIRD HANKEL DETERMINANT

FOR FUNCTIONS DEFINED BY RUSCHEWEYH

DERIVATIVE OPERATOR

Tugba Yavuz

Abstract. Let S denote the class of analytic and univalent functions in
the open unit disk D = {z : |z| < 1} with the normalization conditions

f(0) = 0 and f ′(0) = 1. In the present article, an upper bound for

third order Hankel determinant H3 (1) is obtained for a certain subclass
of univalent functions generated by Ruscheweyh derivative operator.

1. Introduction

Let D be the unit disk {z : |z| < 1} , A be the class of functions analytic in
D, satisfying the conditions

(1) f(0) = 0 and f ′(0) = 1.

Then each function f in A has the Taylor expansion

(2) f(z) = z +

∞∑
n=2

anz
n

because of the conditions (1) . Let S denote class of analytic and univalent
functions in D with the normalization conditions (1) .

The qth Hankel determinant for q ≥ 1 and n ≥ 0 is stated by Noonan and
Thomas [17] as

(3) Hq (n) =

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1
an+1 · · · . . .

...
...

an+q−1 · · · an+2q−2

∣∣∣∣∣∣∣∣∣ .
This determinant has also been considered by several authors. For example,
Noor [18] determined the rate of growth of Hq (n) as n → ∞ for functions
f given by (1) with bounded boundary rotations. Ehrenborg [5] studied the
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2 T. YAVUZ

Hankel determinant of exponential polynomials. The Hankel transform of an
integer sequence and some of its properties were discussed in Layman’s article
[13]. A classical theorem of Fekete and Szegö [6] is considered second Hankel
determinant H2(1) = a3 − a22 for univalent functions. This functional corre-
sponds to the Hankel determinant with q = 2 and n = 1. It is well known
that the sharp inequality

∣∣a3 − a22∣∣ ≤ 1 holds for f ∈ S and given by (2) . This
result is given in the article [4]. Further, Fekete and Szegö [6] introduced the
generalized functional, known as Fekete-Szegö functional,

∣∣a3 − µa22∣∣ where µ
is a real number. Hankel determinant in case of q = 2 and n = 2 is known as
the second Hankel determinant, given by

H2(2) =

∣∣∣∣ a2 a3
a3 a4

∣∣∣∣ = a2a4 − a23.

In particular, sharp bound on |H2 (2)| is obtained by several authors for differ-
ent subclasses of univalent functions (See [8–11,16,23,25,26]).

The third order Hankel determinant is constructed in the case of q = 3 and
n = 1, given by

H3(1) =

∣∣∣∣∣∣
a1 a2 a3
a2 a3 a4
a3 a4 a5

∣∣∣∣∣∣ .
It is obvious that

H3(1) = a3
(
a2a4 − a23

)
− a4 (a4 − a2a3) + a5

(
a3 − a22

)
.

By applying the triangle inequality, we obtain

(4) |H3(1)| ≤ |a3|
∣∣a2a4 − a23∣∣+ |a4| |a4 − a2a3|+ |a5|

∣∣a3 − a22∣∣ .
Recently, many authors have considered to investigate an upper bound for
|H3(1)| of functions in different subclasses of univalent or p-valent functions
(See [1–3,19,20,24]).

Let f(z) = z+

∞∑
n=2

anz
n and g(z) = z+

∞∑
n=2

bnz
n be analytic functions in D.

The Hadamard product (convolution) of f and g, denoted by f ∗ g, is defined
by

(5) (f ∗ g) (z) = z +

∞∑
n=2

anbnz
n, z ∈ D.

Let n ∈ N0 = {0, 1, 2, . . .} . The Ruscheweyh derivative [21] of the nth order
of f, denoted by Dnf (z) , is defined by

(6) Dnf (z) =
z

(1− z)n+1 ∗ f (z) = z +

∞∑
k=2

Γ (n+ k)

Γ (n+ 1) (k − 1)!
akz

k.

The Ruscheweyh derivative gave an impulse for various generalization of well
known classes of functions. By using the Ruscheweyh derivative, we can gen-
eralize the class of the starlike and convex functions, denoted by S∗ and C,
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THIRD HANKEL DETERMINANT 3

which are defined as

(7) S∗ =

{
f(z) ∈ S : Re

(
zf ′ (z)

f (z)

)
> 0, z ∈ D

}
and

(8) C =

{
f(z) ∈ S : Re

(
1 +

zf ′′ (z)

f ′ (z)

)
> 0, z ∈ D

}
.

The class Rn was studied by Singh and Singh [22], which is given by the fol-
lowing definition

(9) Re
z (Dnf (z))

′

Dnf (z)
> 0, z ∈ D.

We denote that R0 = S∗ and R1 = C.
Fekete-Szegö problem was discussed for a certain subclass which includes Rn

in the paper [12]. On the other hand, the second Hankel determinant problem
of functions in Rn is investigated in [25].

Motivated from the results in [2], [3], [19], and [20], we obtain an upper
bound for |H3(1)| for the functions belonging to the class Rn.

2. Preliminary results

The following lemmas are required to prove our main results. Let P be the
family of all functions p analytic in D for which Re (p(z)) > 0 and

(10) p(z) = 1 + c1z + c2z + · · · .

Lemma 2.1 (Duren [4]). If p ∈ P , then |ck| ≤ 2 for each k ∈ N. The inequality
is sharp for each k.

Lemma 2.2 (Grenander & Szegö, [7]). Let p ∈ P. Then

(11) 2c2 = c21 +
(
4− c21

)
x,

(12) 4c3 = c31 + 2c1
(
4− c21

)
x− c1

(
4− c21

)
x2 + 2c1

(
4− c21

) (
1− |x|2

)
z

for some x and z satisfying |x| ≤ 1, |z| ≤ 1.

We obtain following lemma as a special case of the parameter of class of
functions defined in [12].

Lemma 2.3 ([12]). Let f ∈ Rn. Then for µ ∈ R, we have

(13)
∣∣a3 − µa22∣∣ ≤


2

(n+1)(n+2)

[
3− 2µn+2

n+1

]
, µ ≤ n+1

n+2 ,

2
(n+1)(n+2) ,

n+1
n+2 ≤ µ ≤

3(n+1)
n+2 ,

2
(n+1)(n+2)

[
2µn+2

n+1 − 3
]
, µ ≥ 3(n+1)

n+2 .

For each µ there exists a function in Rn such that equality holds.
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4 T. YAVUZ

Lemma 2.4 ([25]). Let the function f given by (2) be in the class in Rn. Then

(14)
∣∣a2a4 − a23∣∣ ≤


1, n = 0,
1
8 , n = 1,

12(n−1)
(n+1)2(n+2)2(n+3)

, n > 1.

3. Main results

Before we get our main results, we need to obtain upper bounds for coeffi-
cients of functions in the class Rn.

Theorem 3.1. Let f(z) ∈ Rn. Then all k ∈ N, we have the following sharp
inequalities

(15) |ak| ≤
k!

(n+ 1)(n+ 2) · · · (n+ k − 1)
.

Proof. Let the function f ∈ Rn. Define a function

(16) F (z) = Dnf(z) = z +

∞∑
k=2

Akz
k,

where

(17) Ak =
Γ(n+ k)

Γ(n+ 1)(k − 1)!
ak, k ≥ 2, A1 = 1.

Then, there exists an analytic function p(z) ∈ P in the unit disk D with p(0) = 1
and Re(p(z)) > 0 such that

(18)
zF ′(z)

F (z)
= p(z).

Hence, we have from (10)

(19) z +

∞∑
k=2

kAkz
k =

{
z +

∞∑
k=2

Akz
k

}
×

{
1 +

∞∑
k=1

ckz
k

}
.

We need to use the principle of the mathematical induction to get desired
result.

For n = 1, A1 = 1. Assume that |Al| ≤ l, l = 2, 3, . . . , k − 1. After that, we
have to show that |Ak| ≤ k. According to (19), we obtain the following relation

(20) (k − 1)Ak = ck−1A1 + ck−2A2 + · · ·+ c1Ak−1.

Applying the triangle inequality with Lemma 1, we obtain

(k − 1) |Ak| ≤ 2

k−1∑
l=1

|Al| .

According to our assumption, we get the following desired result

|ak| ≤
k!

(n+ 1)(n+ 2) · · · (n+ k − 1)
.
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THIRD HANKEL DETERMINANT 5

This completes the proof. �

We prove the following theorem by using the classical method of Libera and
Zlotkiewicz [14], [15].

Theorem 3.2. Let the function given by (1.2) be in the class Rn. Then we
have the following sharp inequalities:

(21) |a2a3 − a4| ≤


2, n = 0,
4

9
√
3
, n = 1,

4(5n+3)
3(n+1)2(n+2)(n+3)

√
2(5n+3)
3(n+3) , n > 1.

Proof. By using the series expansion of F (z) and p(z) in (19), equating coeffi-
cients in (20) yields

a2 =
1

n+ 1
c1,

a3 =
1

(n+ 1) (n+ 2)

{
c2 + c21

}
,(22)

a4 =
1

(n+ 1) (n+ 2) (n+ 3)

{
2c3 + 3c1c2 + c31

}
.

Hence, we get from (22)

(23) a2a3 − a4 = A(n)
{
c1c2 + c31 −B(n)

(
2c3 + 3c1c2 + c31

)}
,

where

(24) A(n) =
1

(n+ 1)
2

(n+ 2)
,

and

(25) B(n) =

(
n+ 1

n+ 3

)
, n = 0, 1, 2, . . . .

Using (11) and (12) in (23) ,we get

|a2a3 − a4| = A(n)

∣∣∣∣∣3
(

1

2
−B(n)

)
c31 +B(n)

c1
(
4− c21

)
x2

2

+
1

2
(1− 5B(n)) c1

(
4− c21

)
x−B(n)c1

(
4− c21

) (
1− |x|2

)
z

∣∣∣∣ .
Since the function p(eiθz), (θ ∈ R) is also in the class P , we assume that without
loss of generality that c1 ≥ 0. For convenience of notation, we take c1 = c,
c ∈ [0, 2] . Applying the triangle inequality with the assumptions c1 = c ∈ [0, 2] ,
|x| = ρ and |z| ≤ 1, it is obtained that

|a2a3 − a4| ≤ A(n)

{
3

∣∣∣∣12 −B(n)

∣∣∣∣ c3 +B(n)
c
(
4− c2

)
ρ2

2
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6 T. YAVUZ

+
1

2
(5B(n)− 1) c

(
4− c2

)
ρ+B(n)c

(
4− c2

) (
1− ρ2

)}
(26)

= A(n)G(c, ρ).

We now maximize the function G(c, ρ) on the closed square [0, 2]× [0, 1] .

(27)

∂G(c, ρ)

∂ρ
= −B(n)c

(
4− c2

)
ρ+

5B(n)− 1

2
c
(
4− c2

)
≥ n

n+ 3
c
(
4− c2

)
> 0.

Hence, G(c, ρ) can not have a maximum in the interior of the closed square
[0, 2]× [0, 1] . Moreover for a fixed c ∈ [0, 2] , we have

(28) max
0≤ρ≤1

G(c, ρ) = G(c, 1) = F (c).

One can obtain that

(29) |a2a3 − a4| ≤ A(n)F (c),

where

(30) F (c) =
3 |1− n|
2(n+ 3)

c3 +
6B(n)− 1

2
c
(
4− c2

)
.

Since

(31) F ′(c) =

 2, n = 0,
4− 3c2, n = 1,

−3c2 + 2 (6B(n)− 1) , n > 1,

we have to consider following three cases:
Case 1. For n = 0, F ′(c) > 0. Hence F (c) ≤ F (2). We get the following

result

(32) |a2a3 − a4| ≤ A(0)F (2) = 2.

This one coincides with the result for starlike functions in the article [2, The-
orem 3.3]. This inequality is sharp and the equality is obtained for the Koebe
function k(z) = z

(1−z)2 and its rotations.

Case 2. Let n = 1. After required calculations, it is obtained that F (c)
has a local maximum at c = 2√

3
. Since F (0) = F (2) = 0, it is easy to see that

F (c) ≤ F
(

2√
3

)
. Hence, we have the following sharp estimates which is stated

in [2]

(33) |a2a3 − a4| ≤ A(1)F

(
2√
3

)
=

4

9
√

3
.

Case 3. Let n > 1. Then, F ′(c) = 0 for c∗ =
√

2(5n+3)
3(n+3) . It is obvious

that F ′′(c) < 0. Then, F (c) has a local maximum at c = c∗. Since, F (0) = 0,
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THIRD HANKEL DETERMINANT 7

F (2) = 12(n−1)
n+3 and

F (c∗)

F (2)
=

5n+ 3

9(n− 1)

√
2(5n+ 3)

3(n+ 3)
> 1 for all n > 1,

we obtain

|a2a3 − a4| ≤ A(n)F (c∗) =
4(5n+ 3)

3(n+ 1)2(n+ 2)(n+ 3)

√
2(5n+ 3)

3(n+ 3)
.

This completes the proof of theorem. �

By using above results in (4) together with the known inequalities given
by Lemma 2.3 and Lemma 2.4, after necessarily calculations we obtain the
following corollary.

Corollary 3.1. Let f(z) ∈ Rn. Then

|H3(1)|(34)

≤


16, n = 0,

11
24 + 4

9
√
3

= 0, 714 . . . , n = 1,

4!
(n+1)3(n+2)3(n+3)

{
13n2+39n+8

n+4 + 4(5n+3)(n+2)
3(n+3)

√
2(5n+3)
3(n+3)

}
, n > 1.

Remark 3.1. By choosing n = 0 and n = 1 in (34) , we obtain sharp upper
bound for third hankel determinant of starlike and convex functions, respec-
tively. These results also agree with those considered by Babalola [2].
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Sarıyer, İstanbul/Turkey

Email address: tugbayavuz@beykent.edu.tr

Ah
ea

d 
of

 P
rin

t


