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Abstract. The reversible property of rings was initially introduced by
Habeb and plays a role in noncommutative ring theory. In this note

we study the reversible ring property on nilpotent elements, introducing

the concept of commutativity of nilpotent elements at zero (simply, a
CNZ ring) as a generalization of reversible rings. We first find the CNZ

property of 2 by 2 full matrix rings over fields, which provides a basis for

studying the structure of CNZ rings. We next observe various kinds of
CNZ rings including ordinary ring extensions.

1. Introduction

Throughout this note every ring is an associative ring with identity unless
otherwise stated. Given a ring R, N∗(R) and N(R) denote the upper nilradical
(i.e., the sum of nil ideals) and the set of all nilpotent elements in R, respec-
tively. Note N∗(R) ⊆ N(R). The polynomial (resp., power series) ring with an
indeterminate x over R is denoted by R[x] (resp., R[[x]]). Zn denotes the ring
of integers modulo n. Denote the n by n (n ≥ 2) full (resp., upper triangular)
matrix ring over R by Matn(R) (resp., Un(R)). Use Eij for the matrix with
(i, j)-entry 1 and elsewhere 0.

Following the literature, a ring is called reduced if it has no nonzero nilpotent
elements. It is easily checked that if R is a reduced ring, then the following
condition holds:

ab = 0 implies ba = 0 for a, b ∈ R.
Cohn [5] called a ring R reversible if this condition holds. Anderson and

Camillo [3], observed the rings whose zero products commute, and used the
term ZC2 for what is called reversible. Prior to Cohn’s work, reversible rings
were studied under the names of completely reflexive and zero commutative by
Mason [22] and Habeb [9], respectively. While, Tuganbaev [29] investigated
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reversible rings in his monograph on distributive lattices arising in ring theory,
using the name of commutative at zero in place of reversible. It is obvious that
commutative rings and reduced rings are reversible. A ring is called abelian
if every idempotent is central. It is simply checked that reversible rings are
abelian. Recently, various generalized conditions of reversible rings have stud-
ied by many authors, and the results obtained were applied to many sorts of
problems arising in noncommutative ring theory.

In this paper, of particular interest will be the commutativity of nilpotent
elements at zero. Various results obtained in this work also can provide a sort
of bridge between commutative and noncommutative ring theory.

2. Basic properties and examples

We study in this section the basic properties of CNZ rings and investigate
their related examples in the process. Our central tool is the following notion.

Definition 2.1. A ring R is said to satisfy the commutativity of nilpotent
elements at zero if ab = 0 for a, b ∈ N(R) implies ba = 0. For simplicity, we
will call a ring CNZ if it satisfies the commutativity of nilpotent elements at
zero.

Reversible rings are clearly CNZ, but there exist many CNZ rings which are
not abelian (and so not reversible) as we see in the following procedure. We
first consider an important example of such CNZ rings.

Example 2.2. Let K be a field and R = Mat2(K). Note that R is obviously
not abelian and hence not reversible. Let

0 6= A =

(
a b
c d

)
∈ N(R).

Then A2 = 0 by help of Cayley-Hamilton Theorem. Since A2 = (a + d)A,
A2 = 0 and a+ d = 0 and so(

a2 + bc 0
0 d2 + bc

)
= 0.

We conclude all the possible forms of A, using this result.
If b = 0 then A = ( 0 0

c 0 ) with c 6= 0.
If c = 0 then A = ( 0 b

0 0 ) with b 6= 0.
If b 6= 0 and c 6= 0, then A =

(
a b
c −a

)
with a2 = −bc 6= 0, since det(A) = 0.

Therefore N(R)\{0} is the union of the following three subsets:

M1 =

{(
0 0
c 0

)
| c 6= 0

}
, M2 =

{(
0 b
0 0

)
| b 6= 0

}
and

M3 =

{(
a b
c −a

)
| a 6= 0, b 6= 0, c 6= 0 and a2 = −bc 6= 0

}
.

We next show that R is a CNZ ring. Let AB = 0 for any nonzero A,B ∈
N(R) to see that. It is easily shown that AB 6= 0 if A ∈ Mi and B ∈ Mj for
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ON COMMUTATIVITY OF NILPOTENT ELEMENTS AT ZERO 3

i, j with i 6= j. So A and B must be contained in an Mi together. If A,B ∈M1

or A,B ∈M2 then clearly BA = 0. So let A,B ∈M3, say

A =

(
a b
c −a

)
and B =

(
a′ b′

c′ −a′
)
.

From

AB =

(
aa′ + bc′ ab′ − ba′
ca′ − ac′ cb′ + aa′

)
= 0,

we have

aa′ + bc′ = 0, ab′ = ba′, ca′ = ac′ and aa′ + cb′ = 0.

These entail that BA = 0, and therefore R = Mat2(K) is a CNZ ring.

A ring R is called directly finite if ab = 1 implies ba = 1 for a, b ∈ R. The
fact that abelian rings (e.g., reversible rings) are directly finite is well-known.
So one may conjecture that CNZ rings are directly finite.

Proposition 2.3. Every CNZ ring is directly finite.

Proof. Let R be a CNZ ring and assume on the contrary that R is not directly
finite. Say that ab = 1 and ba 6= 1 for some a, b ∈ R. Note first that if
bk = bk+1a for k ≥ 1 then 1 = akbk = akbk+1a = ba, a contradiction. Thus
bk 6= bk+1a for all k ≥ 1.

Next, consider two elements

x = b(1− ba) and y = b2(1− ba)a.

Then x2 = 0 and y2 = 0. Suppose that x = 0. Then b = b2a and 1 =
ab = ab2a = ba, a contradiction. Suppose that y = 0. Then b2a = b3a2 and
1 = a2(b2a)b = a2(b3a2)b = ba, a contradiction. So 0 6= x, y ∈ N(R). Then we
have

xy = [b(1− ba)][b2(1− ba)a] = 0 since (1− ba)b = 0,

but

yx = [b2(1− ba)a][b(1− ba)] = b2 − b3a 6= 0.

This implies that R is not CNZ, a contradiction. Therefore R is directly finite.
�

The following proposition provides some examples of CNZ rings.

Lemma 2.4. (1) Let R be a ring. If N(R)2 = 0, then R is CNZ.
(2) The class of CNZ rings is closed under subrings.
(3) Let R be a ring such that (ab)2 = 0 implies ab = 0 for all a, b ∈ N(R).

Then R is CNZ.
(4) The ring Mat2(D) over a commutative domain D is CNZ.
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Proof. The proofs of (1) and (2) follow from the definition of a CNZ ring
directly.

(3) Assume that ab = 0 for a, b ∈ N(R). Since (ba)2 = 0, we have ba = 0,
showing that R is CNZ.

(4) Let Q be the field of quotients of D. Then Mat2(Q) is CNZ by Example
2.2, and so Mat2(D) is CNZ by (2). �

The converses of Lemma 2.4(1),(3) need not hold by the following example.

Example 2.5. (1) Let K be a field and A = K〈a, b〉 be the free algebra with
noncommuting indeterminates a, b over K. Let I be the ideal of A generated
by

am, ab, ba, and bn for m,n ≥ 3.

Set R = A/I and let a, b coincide with their images in R for simplicity. Then
R is commutative and hence CNZ. Note that

N(R) =


m−1∑
i=0

hia
i +

n−1∑
j=0

kjb
j | hi, kj ∈ K for all i, j

 .

But N(R)m+n = 0 and 0 6= (a+ b)2 ∈ N(R)2 for a+ b ∈ N(R).
(2) Consider a ring

R =

{(
a b
0 a

)
| a, b ∈ Z4

}
.

Then R is reversible by [17, Proposition 1.6] and hence CNZ. For

a =

(
2 0
0 2

)
, b =

(
0 1
0 0

)
∈ N(R),

we obtain (ab)2 = 0 but

0 6= ab =

(
0 2
0 0

)
.

Remark 2.6. (1) The condition “the commutativity” for the domain D in
Lemma 2.4(4) cannot be dropped. Indeed, there exists a non-commutative
domain (and so a CNZ ring) D such that Mat2(D) is not directly finite by
[28, Theorem 1.0], and hence Mat2(D) is not a CNZ ring by Proposition 2.3.

(2) Both Un(A) and Matn(A) over any ring A are not CNZ for n ≥ 3. Indeed,
for E12, E23 ∈ N(Un(A)) and n ≥ 3 we get E23E12 = 0 but E12E23 6= 0,
showing that Un(A) is not CNZ for n ≥ 3. Thus Matn(A) is not CNZ for n ≥ 3
by Lemma 2.4(2).

It is evident that U2(A) over any ring A is not reversible, but we have the
following useful result for CNZ rings.

Theorem 2.7. A ring R is reduced if and only if U2(R) is a CNZ ring.
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ON COMMUTATIVITY OF NILPOTENT ELEMENTS AT ZERO 5

Proof. Suppose that R is a reduced ring. Then U2(R) is CNZ by Lemma 2.4(1),
noting

N(U2(R)) =

{(
0 b
0 0

)
| b ∈ R

}
.

Conversely, let U2(R) be CNZ and assume on the contrary that R is not
reduced. Then there exists 0 6= a ∈ R with a2 = 0. Consider two matrices

M1 =

(
a 1
0 0

)
and M2 =

(
a 0
0 0

)
in U2(R). Then M1,M2 ∈ N(U2(R)). But M1M2 = 0 and M2M1 = aE12 6= 0,
entailing that U2(R) is not CNZ. This induces a contradiction, and so such a
cannot exist. Thus R is reduced. �

Regarding to Theorem 2.7, the next example illuminates that the ring U2(R)
is not CNZ any more when we take the weaker condition “R is a reversible ring”
in place of the condition “R is a reduced ring”.

Example 2.8. Let R = Z4 be the ring of integers modulo 4. Then R is a
reversible (hence CNZ) ring but not reduced. For

a =

(
0 1
0 0

)
and b =

(
2 1
0 0

)
∈ U2(R),

we have a2 = 0 and b3 = 0, and so a, b ∈ N(U2(R)). Then ab = 0 but

0 6= ba =

(
0 2
0 0

)
.

This shows that U2(R) is not CNZ.

Let R be a ring and n ≥ 2. Following the literature, consider the ring
extension

Dn(R) = {(aij) ∈ Un(R) | a11 = · · · = ann}
of R. For any ring A and n ≥ 3, Dn(A) is not CNZ by the same argument as
in the proof of Remark 2.6(2). This fact leads to [17, Example 1.5]. We will
use this fact without reference.

Given a ring R and an (R,R)-bimodule M , the trivial extension of R by
M is the ring T (R,M) = R ⊕M with the usual addition and the following
multiplication:(r1,m1)(r2,m2) = (r1r2, r1m2 + m1r2). This is isomorphic to
the ring of all matrices ( r m0 r ), where r ∈ R and m ∈ M and the usual matrix
operations are used. Note D2(R) = T (R,R).

Note that T (R,R) of a reduced ring R is CNZ by Lemma 2.4(2) and Theorem
2.7, but not conversely: In fact, letting R be a non-reduced commutative ring
(e.g., Znk for n, k ≥ 2), we have that T (R,R) is commutative (hence CNZ).

The following example also shows that the trivial extension of a CNZ ring
need not be CNZ.
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Example 2.9. We use the ring and apply the argument in [17, Example 2.1].
Let

A = Z2〈a0, a1, a2, b0, b1, b2, c〉
be the free algebra generated by noncommuting indeterminates a0, a1, a2, b0,
b1, b2, c over Z2. Next let I be the ideal of A generated by

a0b0,a0b1 + a1b0, a0b2 + a1b1 + a2b0, a1b2 + a2b1, a2b2, a0rb0, a2rb2,

b0a0,b0a1 + b1a0, b0a2 + b1a1 + b2a0, b1a2 + b2a1, b2a2, b0ra0, b2ra2,

(a0+a1 + a2)r(b0 + b1 + b2), (b0 + b1 + b2)r(a0 + a1 + a2), and r1r2r3r4,

where the constant terms of r, r1, r2, r3, r4 ∈ A are zero. Now set R = A/I.
Then R is a reversible ring by the argument in [17, Example 2.1], and so R is
CNZ.

We identity a0, a1, a2, b0, b1, b2, c with their images in R for simplicity. Con-
sider the trivial extension T (R,R) of R, and take

M1 =

(
a0 a1

0 a0

)
and M2 =

(
b0c b1c
0 b0c

)
in T (R,R). Then M1,M2 ∈ N(T (R,R)) and M1M2 =

(
a0b0c (a0b1+a1b0)c

0 a0b0c

)
=

0, but

M2M1 =

(
b0ca0 b0ca1 + b1ca0

0 b0ca0

)
=

(
0 b0ca1 + b1ca0

0 0

)
6= 0

since b0ca1 + b1ca0 /∈ I. Thus T (R,R) is not CNZ.

For a ring R and n ≥ 2, let Vn(R) be the ring of all matrices (aij) in Dn(R)
such that ast = a(s+1)(t+1) for s = 1, . . . , n− 2 and t = 2, . . . , n− 1. Note that

Vn(R) ∼= R[x]
xnR[x] .

For a reduced ring R and n ≥ 2, Vn(R) is reversible by [17, Theorem 2.5]
and so it is CNZ. However, Example 2.9 shows that there exists a reversible
ring R such that V2(R) need not be CNZ, and consequently Vn(R) need not be
CNZ for n ≥ 2 by Lemma 2.4(2).

Example 2.10. (1) The class of CNZ rings is not closed under homomorphic
images.

Let K be a field and R = K〈a, b〉 be the free algebra with noncommuting
indeterminates a, b over K. Then R is a domain and hence it is CNZ. Now, let
I be the ideal of R generated by

ab, a2 and b2.

Let r̄ = r + I for r ∈ R. Then ā, b̄ ∈ N(R/I) and āb̄ = 0 but b̄ā 6= 0 by the
construction of I. Thus R/I is not CNZ.

(2) There exists a non-CNZ ring R such that R/I is CNZ for any nil ideal I
of R.
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ON COMMUTATIVITY OF NILPOTENT ELEMENTS AT ZERO 7

Consider R = D3(F ) over a division ring F . Then R is not CNZ as noted
before. All the nonzero proper nil ideals of R are

I1 =

 0 F F
0 0 F
0 0 0

 , I2 =

 0 F F
0 0 0
0 0 0

 ,

I3 =

 0 0 F
0 0 F
0 0 0

 , I4 =

 0 0 F
0 0 0
0 0 0

 , and

I5 =


 0 αb c

0 0 αd
0 0 0

 | b, c, d, α ∈ F and b 6= 0, d 6= 0 are fixed

 .

However, every R/Ii for i = 1, 2, 3, 4, 5 is reversible by [19, Example 2.9] and
so all of these rings are CNZ.

But we have an affirmative answer if we add some condition as in the fol-
lowing.

Proposition 2.11. Let R be a ring and I be a proper ideal of R.
(1) If R is a CNZ ring and I consists of all nilpotent element of bounded

index ≤ n in R, then R/I is CNZ.
(2) If R/I is CNZ and I is reduced as a ring without identity, then R is

CNZ.

Proof. We denote r̄ = r + I for any r ∈ R. (1) Suppose that R is a CNZ ring
and I consists of all nilpotent element of bounded index ≤ n. Let āb̄ = 0̄ for
ā, b̄ ∈ N(R/I). Note that a, b ∈ N(R) and ab ∈ I. Then (ab)n = 0 and 0 =
(ab)n = a(ba)n−1b implies 0 = ba(ba)n−1 = (ba)n since a(ba)n−1 ∈ I ⊆ N(R)
and b ∈ N(R). Hence ba ∈ I. This implies that b̄ā = 0̄, showing that R/I is
CNZ.

(2) Assume that R/I is CNZ and I is reduced and let ab = 0 for a, b ∈ N(R).
Then ā, b̄ ∈ N(R/I) and āb̄ = 0̄. Since R/I is CNZ, ba ∈ I by assumption.
Then (ba)2 = b(ab)a = 0 and so ba = 0 since I is reduced. Therefore R is
CNZ. �

Proposition 2.12. (1) The class of CNZ rings is closed under direct products
and direct sums

(2) Let e ∈ R be a central idempotent. Then R is CNZ if and only if eR and
(1− e)R are CNZ rings.

(3) If R is a ring whose units form an Abelian group, then R is CNZ.

Proof. (1) The proof of direct product case is follows fromN(R) ⊆
∏
γ∈ΓN(Rγ)

where R =
∏
γ∈ΓRγ for any family {Rγ | γ ∈ Γ} of rings. The proof of direct

sum case comes from Lemma 2.4(2) and the above.
(2) It follows directly from (1) and Lemma 2.4(2), since R ∼= eR⊕ (1− e)R.
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(3) Let ab = 0 for a, b ∈ N(R). Then 1− a and 1− b are invertible, and so
(1−a)(1−b) = (1−b)(1−a). This implies 1−a−b = 1−a−b+ab = 1−b−a+ba,
entailing ba = 0. Thus R is CNZ. �

A ring R is called semiperfect if R is semilocal and idempotents can be lifted
modulo the Jacobson radical J(R) of R. Local rings are abelian and semilocal.
We can see that the classes of abelian rings and CNZ rings do not imply each
other by Example 3.1 to follow. But it can be obtained that for an abelian
ring R, R is CNZ and semiperfect if and only if R is a finite direct sum of
local CNZ rings by the same argument as in [20] with Proposition 2.12(1,2).
Moreover, if R is a minimal noncommutative CNZ ring, then R is of order 8 and
is isomorphic to U2(Z2) (here by minimal we mean having smallest cardinality)
by similar computation to [7], noting that U2(Z2) is a CNZ ring by Theorem
2.7.

3. Relations to CNZ rings

We study in this section the related rings and the extension rings of CNZ
rings. Following Bell [4], a ring R is said to satisfy the Insertion-of-Factors-
Property (simply, an IFP ring) if ab = 0 implies aRb = 0 for a, b ∈ R. Reversible
rings are IFP, and IFP rings are also abelian through a simple computation,
but not conversely in each case. One may have a question whether IFP rings
are CNZ, but this is impossible by Example 3.1(2) below. But we get that a
ring R is reduced if and only if U2(R) is a CNZ ring if and only if D3(R) is an
IFP ring by Theorem 2.7 and [13, Proposition 2.8].

In [24, Definition 2.1], a ring R is called nil-IFP if ab = 0 for any a, b ∈ N(R)
implies aRb = 0. Clearly IFP rings are nil-IFP (We change over from “nil-
semicommutative in [24] to “nil-IFP”, so as to cohere with the above). Nil-IFP
rings need not be abelian by [24, Example 2.2]. The classes of CNZ rings and
nil-IFP rings do not imply each other by the following example.

Example 3.1. (1) Let R = Mat2(Z2). Then R is CNZ by Example 2.2.
However, R is not nil-IFP, since E2

21 = 0 but 0 6= E21E12E21 ∈ E21RE21 for
E21 ∈ N(R).

(2) Let A be a reduced ring. The ring R = D3(A) is IFP by [17, Proposition
1.2] and so nil-IFP, but R is not CNZ as noted earlier.

Following Marks [21], a ring R is called NI if N∗(R) = N(R). It is well-
known that a ring R is NI if and only if N(R) forms an ideal if and only
if R/N∗(R) is reduced. Every nil-IFP ring is NI but not conversely by [24,
Theorem 2.5 and Example 2.8]. Moreover, the concepts of CNZ rings and
NI rings are independent of each other by Example 3.1. In fact, the ring
R = Mat2(Z2) in Example 3.1(1) is not NI by [21, Example 2.1].

But we obtain the following.

Proposition 3.2. Let R be a CNZ ring. Then R is NI if and only if R is
nil-IFP.
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ON COMMUTATIVITY OF NILPOTENT ELEMENTS AT ZERO 9

Proof. Suppose that R is NI and let ab = 0 for a, b ∈ N(R). Since R is CNZ,
ba = 0 and so bar = 0 for any r ∈ R. Since aR ⊆ N(R), arb = 0 by hypothesis.
Thus R is nil-IFP. �

Let A be an algebra over a commutative ring S. Due to Dorroh [6], the
Dorroh extension of A by S is the Abelian group A × S with multiplication
given by (r1, s1)(r2, s2) = (r1r2 + s1r2 + s2r1, s1s2) for ri ∈ A and si ∈ S. We
use A× S to denote the Dorroh extension of A by S.

Theorem 3.3. Let R be an algebra with identity over a commutative reduced
ing S. Then R is CNZ if and only if the Dorroh extension D = R×S is CNZ.

Proof. It can be easily checked thatN(D) = (N(R), 0) since S is a commutative
reduced ring. For any (r1, 0), (r2, 0) ∈ N(D),

(r1, 0)(r2, 0) = (0, 0) if and only if r1r2 = 0.

This implies that R is CNZ if and only if the Dorroh extension D is CNZ. �

An element u of a ring R is right regular if ur = 0 implies r = 0 for r ∈ R.
Similarly, left regular elements can be defined. An element is regular if it is
both left and right regular (i.e., not a zero divisor).

A multiplicatively closed subset S of a ring R is said to satisfy the right Ore
condition if for each a ∈ R and b ∈ S, there exist a1 ∈ R and b1 ∈ S such that
ab1 = ba1. It is shown by [23, Theorem 2.1.12] that S satisfies the right Ore
condition and S consists of regular elements if and only if the right quotient
ring Q(R) of R with respect to S exists.

Theorem 3.4. Let S be a multiplicatively closed subset of a ring R, and sup-
pose that S satisfies the right Ore condition and S consists of regular elements.
Assume that the right quotient ring Q = Q(R) of R with respect to S is NI.
Then R is CNZ if and only if Q is CNZ.

Proof. Let Q be an NI ring. It suffices to show that the right quotient ring Q of
R is CNZ by Lemma 2.4(2) when R is CNZ. Assume that R is CNZ. Then R is
nil-IFP by Proposition 3.2 and [11, Lemma 2.1]. Let αβ = 0 for α = ab−1, β =
cd−1 ∈ N(Q). Set I and J be the ideals of Q generated by α and β, respectively.
Then both I and J are nil since Q is NI, with a = αb ∈ I and c = βd ∈ J , and
so a, c ∈ N(R). Since S satisfies the right Ore condition, b−1c = c1b

−1
1 for some

c1 ∈ R and b1 ∈ S. Then 0 = αβ = ab−1cd−1 = ac1b
−1
1 d−1 and so ac1 = 0.

Since R is nil-IFP, 0 = abc1 = acb1 and hence ac = 0. Since S satisfies the right
Ore condition, d−1a = a1d

−1
1 for some a1 ∈ R and d1 ∈ S. From 0 = ac, we get

0 = ad1c = da1c and so a1c = 0. Here, a1 ∈ N(R) since da1 = ad1 ∈ I. Thus
ca1 = 0 by hypothesis, and thus βα = cd−1ab−1 = ca1d

−1
1 b−1 = 0. Therefore

Q is CNZ. �

The following is a similar result to Theorem 3.4.
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Proposition 3.5. Let M be a multiplicatively closed subset of a ring R con-
sisting of central regular elements. Then R is CNZ if and only if M−1R is
CNZ.

Proof. It comes from the fact that N(M−1R) = M−1N(R). �

Recall the ring of Laurent polynomials in x, written by R[x, x−1]. Letting
M = {1, x, x2, . . .}, M is clearly a multiplicatively closed subset of central
regular elements in R[x] such that R[x, x−1] = M−1R[x]. So Proposition 3.5
yields the following.

Corollary 3.6. Let R be a ring. Then R[x] is CNZ if and only if R[x, x−1] is
CNZ.

A ring R is called (von Neumann) regular [8] if for each a ∈ R there exists
b ∈ R such that a = aba. It is well-known that a regular ring R is reversible if
and only if it is IFP if and only if it is abelian. But there exists a regular CNZ
ring which is not abelian. For example, the CNZ ring Mat2(Z2), in Example
3.1(1), is regular but not abelian, obviously.

Due to Nielsen [26] and Rege and Chhawchharia [27], a ring R is called right
(resp. left) McCoy when f(x)g(x) = 0 implies f(x)r = 0 (resp. rg(x) = 0) for
some nonzero r ∈ R, where f(x), g(x) are nonzero polynomials in R[x]. If a
ring is both left and right McCoy we say that the ring is a McCoy ring. It is
shown that if R is a reversible ring then R is a McCoy ring by [26, Theorem
2], and the converse holds for regular rings by [18, Theorem 20]. However,
the regular CNZ ring Mat2(Z2) as above is neither left nor right McCoy by
[12, Proposition 1.6].

It is easily shown that the ring properties of reducedness and commutativity
can extend to polynomial rings. But the reversible ring property does not
extend to polynomial rings by [17, Example 2.1]. So one may ask whether the
polynomial rings over CNZ rings are CNZ. However the answer is negative by
the following.

Example 3.7. We use the ring and apply the argument in [17, Example 2.1]
and Example 2.9. Let R be the CNZ ring in Example 2.9. Note that

N(R) = N∗(R) = Z2〈a0, a1, a2, b0, b1, b2, c〉
and

N(R)[x] = N(R[x]) = N∗(R[x]) = Z2〈a0, a1, a2, b0, b1, b2, c〉[x] and

R

N∗(R)
[x] ∼=

R[x]

N∗(R[x])
∼= Z2,

where Z2〈a0, a1, a2, b0, b1, b2, c〉 means the set of all elements in S of zero con-
stants.

Now consider R[x] and take

f(x) = a0 + a1x+ a2x
2 and g(x) = b0c+ b1cx+ b2cx

2
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ON COMMUTATIVITY OF NILPOTENT ELEMENTS AT ZERO 11

in R[x]. Then f(x), g(x) ∈ N(R[x]) such that f(x)g(x) = (a0+a1x+a2x
2)(b0+

b1x+ b2x
2)c = 0. But

g(x)f(x) = (b0c+ b1cx+ b2cx
2)(a0 + a1x+ a2x

2) = (b0ca1 + b1ca0)x+ · · · 6= 0

since b0ca1 + b1ca0 /∈ I. Thus R[x] is not CNZ.

We next find a condition under which the CNZ property extends to polyno-
mial rings and power series rings.

Theorem 3.8. Let R be a nil-IFP ring such that (ab)2 = 0 implies ab = 0 for
all a, b ∈ N(R). Then we have the following.

(1) If aba = 0 or ab2 = 0 for any a, b ∈ N(R), then ab = 0.
(2) Both R[[x]] and R[x] are CNZ.

Proof. Note that R is CNZ by Lemma 2.4(3).
(1) If aba = 0 for a, b ∈ N(R), then (ab)2 = 0 and so ab = 0 by hypothesis.

Now suppose that ab2 = 0 for a, b ∈ N(R). Since ab ∈ N(R) by Proposition
3.2, ab2 = (ab)b = 0⇒ 0 = (ab)ab = (ab)2 and thus ab = 0.

(2) It is enough to show that R[[x]] is CNZ by Lemma 2.4(2). Let f(x) =∑∞
i=0 aix

i, g(x) =
∑∞
j=0 bjx

j ∈ N(R[[x]]) with f(x)g(x) = 0. Then f(x), g(x)

∈ N(R)[[x]], since N(R[[x]]) ⊆ N(R)[[x]] by help of [10, Lemma 2] and [24,
Theorem 2.5]. From f(x)g(x) = 0, we get

(I)

∞∑
k=0

 ∑
i+j=k

aix
ibjx

j

 =

∞∑
k=0

 ∑
i+j=k

aibjx
i+j

 = 0.

We claim that aibj = 0 for all i, j, proceeding by induction on i + j. First we
obtain a0b0 = 0. This proves the claim for i + j = 0. Now suppose that our
claim is true for i+ j ≤ n− 1. From the equality (I), we have

(II)

n∑
l=0

albn−l = 0.

Multiplying the equality (II) by b0 on the right side, we obtain anb0b0 = 0 by
the inductive hypothesis, and so anb0 = 0 by (1). The equality (II) becomes,

(III) a0bn + a1bn−1 + · · ·+ an−1b1 = 0.

Multiplying the equality (III) by b1, b2, . . . , bn on the right side, we get

an−1b1 = 0, . . . , a1bn−1 = 0, a0bn = 0

in turn by the similar argument to above, and so aibj = 0 for i + j = n.
Inductively, aibj = 0 for all i, j. Since R is CNZ and f(x), g(x) ∈ N(R)[[x]],
bjai = 0 for all i, j and thus g(x)f(x) = 0. This concludes that R[[x]] is
CNZ. �

The condition “a ring R such that(ab)2 = 0 implies ab = 0 for all a, b ∈
N(R)” in Theorem 3.8 is not superfluous. Consider the reversible ring R in
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12 A. M. ABDUL-JABBAR, C. A. K. AHMED, T. K. KWAK, AND Y. LEE

Example 2.9. Then R is nil-IFP but R[x] is not CNZ. Note that (a0b1)2 = 0
for a0, b1 ∈ N(R) but a0b1 6= 0 by the construction of I.

Rege and Chhawchharia [27] called a ring R Armendariz if whenever any
polynomials f(x) =

∑m
i=0 aix

i, g(x) =
∑n
j=0 bjx

j ∈ R[x] satisfy f(x)g(x) =
0, aibj = 0 for all i, j. This nomenclature was used by them since it was
Armendariz [2, Lemma 1] who initially showed that a reduced ring always
satisfies this condition.

The Armendariz property of polynomial rings is extended to power series
rings by Kim et al. [15]. A ring R is called power-serieswise Armendariz
if ab = 0 for all a ∈ Cf(x) and b ∈ Cg(x) whenever f(x), g(x) ∈ R[[x]] satisfy
f(x)g(x) = 0. Every power-serieswise Armendariz ring is obviously Armendariz
by definition, but not conversely by [15, Example 2.1].

Proposition 3.9. (1) If R is an Armendariz ring, then R is CNZ if and only
if R[x] is CNZ.

(2) If R is a power-serieswise Armendariz ring, then the following are con-
ditions equivalent:

(i) R is CNZ; (ii) R[x] is CNZ; (iii) R[[x]] is CNZ.

Proof. (1) It is enough to show that R[x] is CNZ when so is R, by Lemma
2.4(2). Assume that R is Armendariz and CNZ. Let f(x)g(x) = 0 for f(x) =∑m
i=0 aix

i, g(x) =
∑n
j=0 ajx

j ∈ N(R[x]). Then f(x), g(x) ∈ N(R)[x] because

N(R[x]) = N(R)[x] by [1, Corollary 5.2]. Since R is Armendariz, aibj = 0 for
all i and j. This implies that bjai = 0 for all i and j by hypothesis and so
g(x)f(x) = 0. Thus R[x] is CNZ.

(2) Let R be a power-serieswise Armendariz ring. Then it suffices to show
that R[[x]] is CNZ when so is R by (1) and Lemma 2.4(2). Note that N(R[[x]])
⊆ N(R)[[x]] for a power-serieswise Armendariz ring R by [15, Lemma 2.3(2)]
and [10, Lemma 2]. Hence, it can be proved that R[[x]] is CNZ if R is CNZ by
the similar computation to the proof of (1). �

Note that D3(R) over a reduced ring R is a power-serieswise Armendariz
ring by [15, Corollary 3.6(2)], but D3(R) is not CNZ as noted above, and the
CNZ ring R = Mat2(K) over a field K, in Example 2.2, is not Armendariz by
[16, Example 1]. However, a ring R is reduced (i.e., U2(R) is a CNZ ring) if and
only if D3(R) is an Armendariz ring if and only if D3(R) is a power-serieswise
Armendariz ring by help of [13, Proposition 2.8].

As parallel extensions to Proposition 3.9, we finally consider the concept of
CNZ ring property for skew (Laurent) polynomial rings and skew (Laurent)
power series rings.

For a ring R with an endomorphism α, we denote R[x;α] a skew polynomial
ring (also called an Ore extension of endomorphism type) whose elements are
the polynomials

∑n
i=0 aix

i, ai ∈ R, where the addition is defined as usual
and the multiplication subject to the relation xa = α(a)x for any a ∈ R.
The set {xj}j≥0 is easily seen to be a left Ore subset of R[x;α], so that one
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ON COMMUTATIVITY OF NILPOTENT ELEMENTS AT ZERO 13

can localize R[x;α] and form the skew Laurent polynomial ring R[x, x−1;α].
Elements of R[x, x−1;α] are finite sums of elements of the form x−jaxi where
a ∈ R and i and j are nonnegative integers. The skew power series ring is
denoted by R[[x;α]], whose elements are the series

∑∞
i=0 aix

i for some ai ∈ R
and nonnegative integers i. The skew Laurent power series ring R[[x, x−1;α]]
which contains R[[x;α]] as a subring, arises as the localization of R[[x;α]] with
respect to the Ore set {xj}j≥0, and when α is an automorphism of R, it consists
elements of the form xsas + xs+1as+1 + · · ·+ a0 + a1x+ · · · , for some ai ∈ R
and integers s ≤ 0 and i ≥ s, where the addition is defined as usual and the
multiplication is defined by the rule xa = α(a)x for any a ∈ R.

Recall that a ring R with an endomorphism α is called skew power-serieswise
Armendariz (or SPA for short) [25, Definition 2.1] if for every skew power series
p(x) =

∑∞
i=0 aix

i, q(x) =
∑∞
j=0 bjx

j ∈ R[[x;α]], p(x)q(x) = 0 ⇔ aibj = 0 for
all i, j.

Lemma 3.10. Let R be an SPA ring and α an endomorphism of R. Then we
have the following.

(1) For a, b ∈ R, ab = 0 if and only if aα(b) = 0.
(2) If α is an automorphism and S is one of symbols R[x;α], R[x, x−1;α],

R[[x;α]] or R[[x, x−1;α]], then N(RS) = N(R)S.

Proof. By [25, Lemma 2.2(1) and Theorem 2.13]. �

Theorem 3.11. Let R be an SPA ring and α an automorphism of R. Then
the following are equivalent:

(1) R is CNZ.
(2) R[x;α] is CNZ.
(3) R[x, x−1;α] is CNZ.
(4) R[[x;α]] is CNZ.
(5) R[[x, x−1;α]] is CNZ.

Proof. It is enough to show that (1)⇒(5) by Lemma 2.4(2). Assume that (1)
holds. Let p(x)q(x) = 0 for p(x) = xsas+xs+1as+1+· · ·+a0+a1x+· · · , q(x) =
xtbt + xt+1bt+1 + · · · + b0 + b1x + · · · ∈ N(R[[x, x−1;α]]) where s and t are
integers with s, t ≤ 0. Then aibj = 0 by [25, Proposition 2.8], and moreover
ai, bj ∈ N(R) for all s ≤ i and t ≤ j by Lemma 3.10(2). Then we have bjai = 0
and so bjα

n(ai) = 0 for any nonnegative integer n, by Lemma 3.10(1). Thus
q(x)p(x) = 0, and therefore R[[x, x−1;α]] is CNZ. �

Corollary 3.12. Let R be a power-serieswise Armendariz ring. The following
are equivalent:

(1) R is CNZ.
(2) R[x] is CNZ.
(3) R[x, x−1] is CNZ.
(4) R[[x]] is CNZ.
(5) R[[x, x−1]] is CNZ.
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For a ring R with a monomorphism α, let A(R,α) be the subset{
x−irxi | r ∈ R and i ≥ 0

}
of the skew Laurent polynomial ring R[x, x−1;α]. Note that for j ≥ 0, xjr =
αj(r)xj implies rx−j = x−jαj(r) for r ∈ R. This yields that for each j ≥ 0
we have x−irxi = x−(i+j)αj(r)xi+j . It follows that A(R,α) forms a sub-
ring of R[x, x−1;α] with the following natural operations: x−irxi + x−jsxj =
x−(i+j)(αj(r) + αi(s))xi+j and (x−irxi)(x−jsxj) = x−(i+j)αj(r)αi(s)xi+j for
r, s ∈ R and i, j ≥ 0. Note that A(R,α) is an over-ring of R, and the map
ᾱ : A(R,α)→ A(R,α) defined by ᾱ(x−irxi) = x−iα(r)xi is an automorphism
of A(R,α). Jordan showed, with the use of left localization of the skew poly-
nomial R[x;α] with respect to the set of powers of x, that for any pair (R,α),
such an extension A(R,α) always exists in [14]. This ring A(R,α) is usually
said to be the Jordan extension of R by α.

Proposition 3.13. Let R be a ring R with a monomorphism α. Then R is
CNZ if and only if the Jordan extension A = A(R,α) of R by α is CNZ.

Proof. It is enough to show the necessity by Lemma 2.4(2). Suppose that
R is CNZ and cd = 0 for c = x−irxi, d = x−jsxj ∈ N(A) for i, j ≥ 0. Then
r, s ∈ N(R) obviously and so αm(r), αn(s) ∈ N(R) for any nonnegative integers
m and n, since α(N(R)) ⊆ N(R). From cd = 0, we have αj(r)αi(s) = 0 and
hence 0 = αi(s)αj(r) by assumption. This implies that dc = 0, showing that
the Jordan extension A of R by α is CNZ. �
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