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COFINITE PROPER CLASSIFYING SPACES FOR LATTICES

IN SEMISIMPLE LIE GROUPS OF R-RANK 1

Hyosang Kang

Abstract. The Borel–Serre partial compactification gives cofinite mod-

els for the proper classifying space for arithmetic lattices. Non-arithmetic
lattices arise only in semisimple Lie groups of R-rank one. The author

generalizes the Borel–Serre partial compactification to construct cofi-
nite models for the proper classifying space for lattices in semisimple

Lie groups of R-rank one by using the reduction theory of Garland and

Raghunathan.

1. Introduction

Let Γ be a topological group. The classifying space for Γ, denoted by BΓ,
is a CW-complex such that π1(BΓ) ∼= Γ and πi(BΓ) = {e} for all i ≥ 2.
The universal cover EΓ of BΓ and the universal bundle EΓ → BΓ classify
Γ-principal bundles (cf. [18, §6, §7]).

Classifying spaces appear in topological invariants such as higher signatures
in algebraicK-theory (cf. [25]). To compute these invariants, explicit models for
the universal cover EΓ are necessary. In [34,35] Milnor explicitly constructed a
general model for EΓ. Although Milnor’s model is always infinite dimensional,
finite dimensional model does exist for certain cases (cf. [1, Corollary 4.14],
[42, Theorem 0.1], [43, Theorem B], [46, §1]).

The proper classifying spaces, denoted by EΓ (cf. Definition 3), are also used
in formulations of algebraic K-theoretic conjectures such as the Baum–Connes
conjecture (cf. [5,17,44]) and the integral Novikov conjecture (cf. [3,4,20,22,29]).
Conjectures such as strong Novikov conjecture (cf. [17, Conjecture 4.1]) and
the generalized integral Novikov conjecture (cf. [20, Equation (1.3)]) are known
to be true for groups admitting a cofinite (cf. Definition 1) model of EΓ with
finite asymtotic dimensions (cf. [4], [48]).
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There are explicit models for the proper classifying spaces for mapping class
groups (cf. [21, Theorem 1.3], [23, Theorem 2]), outer automorhpism groups of
free groups (cf. [26, Theorem 8.1], [47, Theorem 5.1]), p-adic algebraic groups
(cf. [27, Theorem 4.13]), discrete groups acting on trees (cf. [27, Theorem 4.7]),
discrete groups acting isometrically on CAT (0)-space (cf. [28, Theorem 1.1(1)]),
and δ-hyperbolic groups (cf. [33, Theorem 1]).

For arithmetic groups (cf. Definition 6), Borel and Serre constructed a par-
tial compactification of symmetric spaces in [9], called the Borel–Serre partial
compactification (cf. §2.4). For torsion-free arithmetic group, it is a cofinite
model for the classifying space. Moreover, it is known by Borel and Prasad
(cf. [2, Remark 5.8]) that this compactification is also a cofinite model for the
proper classifying spaces for arbitrary arithmetic groups (cf. [20, Theorem 3.2]).

Arithmetic groups in semisimple algebraic groups are lattices (cf. [8, Lemma
9.2]). There are non-arithmetic lattices in semisimple Lie groups of R-rank 1
(cf. [11, 12, 14, 30, 36, 37, 41]). In this paper, we construct a cofinite classifying
space for general lattices in semisimple Lie groups of R-rank 1.

Theorem. Let G be a non-compact connected semisimple Lie group of R-rank
1 and Γ a non-uniform lattice in G. There exists a cofinite model for the proper
classifying space for Γ.

We provide preliminary backgrounds in §2, and a proof in §3. The proof
uses the ideas of the Borel–Serre partial compactifications (cf. §2.4) and the re-
duction theory of Garland and Raghunathan (cf. §2.5). To the best of author’s
knowledge, good references are: [27] for classifying spaces; [24], [38], [40], [45]
for lattices in Lie groups; [7] for the Borel–Serre partial compactification.

2. Preliminaries

In §2.1-2.2, we overview the concepts of the classifying spaces and lattices
in Lie groups. In §2.3, we describe the horospherical decompositions of sym-
metric spaces and the natural actions of lattices on symmetric spaces. In §2.4,
we review the construction of the Borel–Serre partial compactification by using
horospherical decompositions and the reduction theory of arithmetic lattices.
In §2.5, we explain the reduction theory of Garland and Raghunathan on lat-
tices in semisimple Lie groups of R-rank 1.

2.1. Classifying spaces

Definition 1 ([27, Definition 1.1]). Let Γ be a topological group. A Γ-CW-
complex X is a Γ-space with a Γ-fibration

X0 ⊂ · · · ⊂ Xn ⊂ · · · ⊂ X =

∞⋃
n=0

Xn
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and a Γ-pushout ∐
α∈In

(
Γ/Hα × Sn−1

α

) qnα //
� _

��

Xn−1� _

��∐
α∈In (Γ/Hα ×Dn

α)
Qnα // Xn

for each n ≥ 1. Each map Qnα is a natural extension of the map qnα, and all
maps qnα and Qnα are Γ-equivariant homeomorphisms. Each subgroup Hα ⊂ Γ
is called an isotropy group of n-cell Dn

α. The image of each orbit Γ/Hα ×Dn
α

in Xn is called a Γ-equivariant n-cell. A Γ-CW-complex is called cofinite if it
has only finitely many Γ-equivariant cells, that is, the quotient space is a finite
CW-complex.

Recall that a CW-complex X is a model for the classifying space BΓ if the
fundamental group π(X) is isomorphic to Γ and all higher homotopy groups are
trivial. Thus the universal cover EΓ of the classifying space BΓ is a contractible
Γ-CW-complex on which Γ acts freely. In other words, a Γ-CW-complex is a
model for EΓ if and only if the space is contractible and all isotopy group are
trivial. The definition of the classifying space generalizes to various types of
families of isotropy groups, such as the families of compact subgroups COM,
and virtually cyclic subgroups VCYC.
Definition 2 ([27, Definition 1.8, Theorem 1.9]). A Γ-CW-complex X is called
the classifying space for F , and denoted by EFΓ, if (1) all isotropy groups
belong to F , and (2) for any subgroup H ∈ F , the fixed point set XH is
non-empty and contractible.

The classifying space for ECOMΓ is called the proper classifying space for Γ,
and denoted by EΓ.

Definition 3. Let Γ be a discrete group. A Γ-CW-complex X is a model for
EΓ if (1) all isotopy groups are finite, and (2) for every finite subgroup H of Γ
the fixed point set XH is non-empty and contractible.

Let G be a Lie group with finitely many path components and K be a
maximal compact subgroup of G. Abel showed in [1] that for any discrete
subgroup Γ in G, the group G and the space G/K are models for EΓ under
the canonical action of Γ (cf. [27, Theorem 4.4]).

Example 4. The group Γ = PSL2(Z) acts on the upper half-plane H =
{x + yi ∈ C | y > 0} by the Möbius transformation:

(
a b
c d

)
· z = az+b

cz+d . The

space H is a finite-dimensional (but not cofinite) model for the classifying
space EΓ. Figure 1(A) shows a fundamental domain of Γ in H. The union of
all Γ-translates of σi (1 ≤ i ≤ 5) is the upper half-plane H, which is a Γ-CW
complex. The isotropy groups of 0-dimensional simplices σ3, σ5 are isomorphic
to Z3, Z2 respectively. The isotropy groups of all other simplices are trivial.
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Let H
Q

be the union of the upper half-plane H and the set of all rational

boundary points Q ∪ {i∞}. The action of PSL2(R) extends naturally to H
Q

.

With additional simplex σ6 = i∞, we get a fundamental domain for Γ in H
Q

(cf. Figure 1(B)). Thus H
Q

is a cofinite Γ-CW-complex. However, it is not a
model for EΓ because the isotropy group of the point i∞ is an infinite group:
( 1 n

0 1 ) · i∞ = i∞ for all n ∈ Z.

− 1
2

1
2

σ1

σ2

σ3 σ4
σ5

b
b

−1 1

(a) A fundamental domain in H

1

1
2

− 1
2

b

b b−1

σ1

σ2

σ3

σ4 σ5

σ6 = i∞

(b) A fundamental domain in H
Q

Figure 1. Fundamental domains for SL(2,Z)

2.2. Lattices in Lie groups

A lattice Γ is a discrete subgroup of a (connected) Lie group G such that the
volume of the quotient Γ\G is finite. A lattice is called uniform if the quotient
Γ\G is compact. Arithmetic lattices are typical examples of lattices in Lie
groups. To define a notion of arithmeticity, we first define algebraic groups.

Definition 5. Let Pα, α ∈ I, be a collection of polynomials defined on
GLN (C). The group G = {g ∈ GLN (C) | Pα(g) = 0 for all α ∈ I} is called a
(linear) algebraic group. For a field k, the group G is said to be defined over k
if all polynomials Pα have coefficients only in k. An algebraic subgroup T of
G is called a torus if there is an isomorphism T ∼= GL1(C)m for some integer
m ≥ 1. If this isomorphism is defined over k, then T is said to be k-split. The
k-rank of G is the common dimension of the maximal k-split tori.

Definition 6. Two subgroups Γ1, Γ2 of a groupG are said to be commensurable
if their intersection Γ1∩Γ2 has finite indices in Γ1 and Γ2. A discrete subgroup
Γ of a semisimple Lie group G is called arithmetic if there exists a linear
algebraic group H defined over Q and a surjective morphism ϕ : H(R) → G
with compact kernel such that the image ϕ(H(Z)) is commensurable with Γ.
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A lattice Γ in a Lie group G is said to be reducible if there is an isomor-

phism ϕ : G
∼=→ G1 × G2 and a subgroup Γ′ ⊂ Γ of finite index such that

ϕ(Γ′) = Γ1 × Γ2. A lattice which is not reducible is called irreducible. One of
the most remarkable results on lattices in semisimple Lie groups is Margulis’s
superrigidity (cf. [32]).

Theorem 7 (Margulis [31]). Every irreducible lattice in semisimple Lie group
of R-rank greater than one is arithmetic.

From this theorem, we conclude that there is no arithmetic lattice in semisim-
ple Lie group except for the case of R-rank 1: SO(1, n), SU(1, n), Sp(1, n), and
the Cayley surface F 4

−20. Gromov–Schoen [15] and Corlette [10] showed that

superrigidity also holds for lattices in Sp(1, n) and F−20
4 . However, there are

examples of non-arithmetic lattices in SO(1, n), SU(1, n) (cf. [11], [14], [39]).

2.3. Horospherical decompositions of symmetric spaces

Let G be a semisimple algebraic group defined over R. Let G = G(R)
be the real locus of G and K a maximal compact subgroup of G. Since the
algebraic group G is semisimple, the Lie group G is semisimple. Thus we
have the Cartan decomposition g = k ⊕ p of the Lie algebra g of G with
respect to the Lie algebra k of K. For an abelian subalgebra a of p, a linear
map α : a → R is called a restricted root with respect to a if the subalgebra
gα = {X ∈ g | AdH(X) = α(H)X for all H ∈ a} is non-zero. Let Φ(g, a) be the
set of all restricted roots with respect to a. Let Φ+(g, a) (∆(g, a), respectively)
be a subset of Φ(g, a) consists of all positive (simple, respectively) restricted
roots. When there is no ambiguity, we simply write them as Φ, Φ+, and ∆.

For each subset I ⊂ ∆, let ΦI be the set of restricted roots generated
by I, and nI =

∑
α∈Φ+−ΦI gα, aI =

⋂
α∈I kerα. Let z(a) is the centralizer

of a in g, and aI is the orthogonal complement of aI in a. Then for mI =
k ∩ z(a) ⊕ aI ⊕∑α∈ΦI gα, the Lie subalgebra pI = nI + aI + mI is called the
standard parabolic subalgebra of g. A subalgebra p of g is called parabolic if
p is AdG-conjugate to a standard parabolic subgroup. Thus any parabolic
subalgebra p admits a decomposition p = n + a + m.

A subgroup P ⊂ G is called a parabolic subgroup if it is the normalizer of
a parabolic subalgebra under the adjoint representation of G. Every maxi-
mal parabolic subgroup is conjugate to a unique maximal standard parabolic
subgroup (cf. [6, §I.1]).

Definition 8. Let P be a parabolic subgroup of G with respect to the parabolic
subalgebra p = n+a+m. Let N , A, M be the Lie groups of n, a, m, respectively.
The decomposition

N ×A×M → P

(n, a,m) 7→ nam
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is called the real Langlands decomposition of P . The self-action of PI is given
as follows: for n, n′ ∈ NI , a, a′ ∈ AI , and m,m′ ∈MI ,

nam · (n′, a′,m′) = (n(amn′), aa′,mm′),(2.1)

where amn′ = (am)n′(am)−1.

For any parabolic subgroup P ⊂ G, the Iwasawa decomposition (cf. [24,
Theorem 6.46]) G ∼= NP × AP × K induces G = P · K (cf. [16, Theorem
IX.1.3]). Since P ∩K = MP ∩K, X decomposes into

NP ×AP ×XP
∼= X

(n, a,mK) 7→ nam ·K,(2.2)

where XP = MP /(MP ∩ K). This is called the horospherical decomposition
of X with respect to P . The component XP is called the boundary symmetric
space. Let g = p · k be an element in G such that p ∈ P and k ∈ K. In terms
of the horospherical decomposition with respect to P , the element k acts as

(2.3) k · z = (kn′, ka′, kz′) ∈ NkP ×AkP ×XkP .

(2.2) and (2.3) define the action of G on X. If k /∈ MP , then the coordinate
system of X changes to the horospherical decomposition of X with respect to
kP . Thus we have:

Remark 9. If the R-rank of G is strictly greater than 1, then for two parabolic
subgroups P ( Q, there exists a parabolic subgroup P ′ ⊂MQ satisfying

(2.4) NP = NQNP ′ , AP = AQAP ′ , MP ′ = MP .

Thus XQ = NP ′ × AP ′ ×XP . The horospherical decomposition (2.2) further
decomposes into

(2.5) X ∼= NQ ×AQ × (NP ′ ×AP ′ ×XP ),

which is called the relative horospherical decomposition of X (cf. [6, §I.1.11]).
For example, let G = SL2(C) × SL2(C), K = SO(2) × SO(2), P = P0 × P0,
and Q = P0 × SL(2,R). Then NQ = NP0

× {I}, AQ = AP0
× {I}, MQ =

{±I}×SL2(R), NP = NP0
×NP0

, AP = AP0
×AP0

, MP = {±I}× {±I}, and
P ′ = {±I} × P0 satisfy (2.4) and (2.5).

Let G be a semisimple linear algebraic group defined over Q. An algebraic
subgroup P ⊂ G is called a rational parabolic subgroup if it is defined over Q
and the real locus P = P(R) is a parabolic subgroup of the semisimple Lie
group G = G(R). Let NP be the unipotent radical of P and LP = NP\P be
the Levi quotient. In order to write P as a product of NP and LP, we first
lift LP into G whose image is invariant under the extended Cartan involution
on G (cf. [9, §1.9]). For simplicity, let us denote LP be the image of this
lift. The subgroups NP and LP are also defined over Q (cf. [6, Proposition
§III.1.11]). Let SP be the maximal Q-split center of LP. For the set of all Q-
characters XQ(LP) on LP, define MP =

⋂
ξ∈XQ(LP) kerξ2. For NP = NP(R),
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AP = SP(R)0, MP = MP(R), decomposition P ∼= NP × AP ×MP is called
the rational Langland decomposition of P . It induces the rational horospherical
decomposition X ∼= NP ×AP ×XP.

Example 10. Let G = SL2(C) and K = SO(2). Every parabolic sub-
group of G = SL2(R) is minimal, hence conjugate to the standard para-
bolic subgroup P0 =

{(
a 0
c a−1

)
∈ G | a 6= 0

}
. The symmetric space X = G/K

is identified with the upper half-plane H. For NP0 = {( 1 0
c 1 ) ∈ P | c ∈ R},

AP0
=
{(

a 0
0 a−1

)
∈ P | a > 0

}
, MP0

= {±I}, the horospherical decomposition

is NP0 × AP0
∼= H:

(
( 1 0
c 1 ) ,

(
a 0
0 a−1

))
→ ( 1 0

c 1 ) ·
(
a 0
0 a−1

)
(The one-pointed set

XP0
is omitted).

Remark 11. Let P ( Q be two rational parabolic subgroups of G. If the Q-
rank of G is greater than 1, then there exists a parabolic subgroup P′ in MQ
satisfying NP = NQNP′ , AP = AQAP′ , MP = MP (cf. [6, §III.1.16]). Thus

(2.6) XQ
∼= NP′ ×AP′ ×XP.

For example, Q = P0 ×P0, P′ = {I} ×P0 satisfies (2.6).

2.4. The Borel–Serre partial compactification

Let G be a semisimple algebraic group defined over Q, K a maximal compact
subgroup of G = G(R), and X = G/K the corresponding symmetric space.
Let P be a rational parabolic subgroup of G and X ∼= NP × AP ×XP be the
rational horospherical decomposition of X with respect to P. Let Φ(P,AP) be
the set of all restricted root of the Lie algebra of P = P(R) with respect to the
Lie algebra of AP. For any element a ∈ AP and a restricted root α ∈ ∆(P,AP),
we define aα = expα(log a). Let ∆(P,AP) be the subset of Φ(P,AP) consists
of all simple restricted roots.

Let AP,t = {a ∈ AP | aα ≥ t for all α ∈ Φ+} for some t > 0. Let U and
V be open subsets of NP and MP, respectively. The subset SP,U,t,V = U ×
AP,t×V ⊂ NP×AP×XP is called a Siegel set. For any arithmetic subgroup Γ
of G, Borel and Harish-Chandra showed in [8] that there are only finitely many
rational parabolic subgroups P1, . . . ,Pn with distinct Γ-conjugacy classes such
that

(2.7) Ω =

n⋃
i=1

SPi,Ui,ti,Vi

is a fundamental set for Γ.
For rational parabolic subgroup P ⊂ G, define e(P) = NP×XP. The union

X
BS

= X ∪
⋃

P: rational

e(P)

with the following convergence class of sequences C (cf. [6, §I.8.9]) is called the
Borel–Serre partial compactification of X.

(1) If yj → y∞ in X, then yj
C−→ y∞.
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(2) If yj → y∞ in e(P), then yj
C−→ y∞.

(3) If yj = (nj , aj ,mj) ∈ NP × AP × XP
∼= X is a unbounded sequence

such that (a) nj → n∞, (b) mj → m∞, and (c) aαj → ∞ for every

α ∈ Φ+(P,AP ), then yj
C−→ n∞.

(4) Let P ( Q be two rational parabolic subgroups in G. From Remark 11,
e(Q) = NQ ×XQ

∼= NP ×AP′ ×XP. If a sequence yj = (nj , aj , wj) ∈
NP×AP′×XP satisfies (a) nj → n∞ in NP, (b) wj → w∞ in XP, and
(c) aαj → ∞ for every positive restricted root α ∈ Φ+(P ′, AP′), then

yj
C−→ (n∞, w∞) ∈ e(P).

The conditions (1) and (2) give the canonical topologies on X and e(P). If Γ

is torsion-free, then the space X
BS

is a cofinite model for the classifying space
(cf. [9, §11.1]). Since every arithmetic group contains a torsion-free subgroup

of finite index, the space X
BS

is a proper Γ-space for any arithmetic group Γ
in G (cf. [20, Theorem 3.2]).

Let us visualize the condition (3) in H
BS

. Note that each parabolic subgroup
of SL2(R) is the stabilizer of a point in the geodesic boundary H(∞) = R ∪
{i∞}. Thus the collection of rational parabolic subgroups in SL2 is in one-
to-one correspondence with the set Q ∪ {i∞}. For example, real locus P∞ of
P∞ =

{(
a b
0 a−1

)
∈ SL2(C) | a 6= 0

}
fixes i∞, and e(P∞) ∼= N∞ = {( 1 b

0 1 ) ∈ P}.
For sequences aj → ∞ and bj → b∞ ∈ R, the sequence yj = bj + aji ∈ H
converges to e(P∞) (cf. Figure 2(A)):

bj + aji
∼=7−→
((

1 bj
0 1

)
,

(√
aj 0
0 1/

√
aj

))
−→

(
1 b∞
0 1

)
∈ e(P∞).

In general, if a unbounded sequence yj ∈ H converges to a geodesic line γ(t)
in H, and P stabilizes the point at infinity γ(∞) ∈ H(∞), then yj converges
to a point in e(P ).

The condition (4) is equivalent to saying that e(P) is a subspace of e(Q).
For example, let X = H × H, Q1 = P∞ × SL2, Q2 = SL2 × P∞, and
P = P∞ × P∞. Let aj > 0, a′k > 0, bj , b

′
k be sequences of real numbers

such that aj , a
′
k → ∞ and bj → b∞, b′k → b′∞ as j, k → ∞. The double

sequence yj,k = (bj + aji, b
′
k + a′ki) ∈ H ×H is unbounded and converges to((

1 b∞
0 1

)
,
(

1 b′∞
0 1

))
∈ e(P) ∈ H×H

BS
. The path (c) in Figure 2(B) illustrates

this convergence. There are other convergent paths too: (a) yj,k → y∞,k →
y∞,∞ and (b) yj,k → yj,∞ → y∞,∞.

2.5. Reduction theory of Garland and Raghunathan

Let G be a semisimple algebraic group of the R-rank 1, and G = G(R)
its real locus. Let K be a maximal compact subgroup of G, and X = G/K
the corresponding symmetric space. Since the R-rank of G is 1, the boundary
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b

b

yj = bj + aji

e(P∞)

γ(t)

b
γ(∞)

e(P )

b∞

(a) Convergence sequences in H
BS

be(Q1) e(P)

e(Q2)

X

(a)

(b)

(c)

(b) Convergence sequences

in H×H
BS

Figure 2. The topology of the Borel–Serre partial compactifications

symmetric space XP is a one-point space. Thus X ∼= NP × AP is the real
horospherical decomposition of X.

Two geodesics γ1, γ2 in X are said to be equivalent if

lim sup
t→∞

d(γ1(t), γ2(t)) <∞.

The set X(∞) = {all geodesics in X}/ ∼ is called the geodesic boundary of X.
The subalgebra p in the Cartan decomposition g = k⊕p is canonically identified
with the tangent space Tx0

X at the point x0 = e ·K. The Killing form on g
induces a Riemannian metric d on X and thus a norm || · || on p. Then the
subset p1 = {Y ∈ p | ||Y || = 1} is identified with the geodesic boundary X(∞)
(cf. [6, Proposition I.2.3]).

For each vector Y ∈ p1, algebra aY = RY is a maximal because the R-rank
of G is 1. Thus we obtain a unique parabolic subgroup PY . Conversely, let P
be a parabolic subgroup in G, and p its Lie algebra. Again, since the R-rank
of G is 1, there is a unique vector Y ∈ p1 which generates the maximal abelian
subalgebra of p.

In summary, there is a one-to-one correspondence between the set P(G) of
all real parabolic subgroups of G, p1, and X(∞): P(G)←→ p1 ←→ X(∞).

Garland and Raghunathan formulated the reduction theory for non-uniform
lattice Γ in G in [13]. Let D(x0,Γ) be the Dirichlet fundamental domain for
Γ: for x0 = e ·K,

D(x0,Γ) = {x ∈ X | d(x, x0) ≤ d(x, γ · x0) for all γ ∈ Γ}.
For t > 0, let AP,t = {a ∈ AP | aα ≥ t for all α ∈ Φ+(P,AP )}. For an
open subsets U ⊂ NP , the set SP,U,t = U × AP,t is called a Siegel set in the
symmetric space X. The below summarizes the main theorems of [13].

Theorem 12 ([13]). Under the notions, the following holds.



Ah
ea

d 
of

 P
rin

t10 H. KANG

(1) There are only finitely many geodesic rays in D(x0,Γ) eminating from
x0 (cf. [13, Theorem 4.6]).

(2) For each parabolic subgroup P corresponding to a ray in D(x0,Γ), the
subgroup Γ ∩NP ⊂ NP cocompact (cf. [13, Theorem 0.7]).

(3) Let P1, . . . , Pn be the real parabolic subgroups of G corresponding to
geodesic rays in D(Γ, x0). There exist open subsets Ui ⊂ NPi , real
numbers ti > 0, mutually disjoint Siegel sets SPi,Ui,ti , and a compact
subset C ⊂ X such that

(2.8) Ω = C ∪
n⋃
i=1

SPi,Ui,ti

is a fundamental set for Γ (cf. [13, Theorem 0.6]).

Figure 3 visualizes Theorem 12 for the Fuchsian group generated by ( 1 1
0 1 ),

( 1 0
1 1 ). Figure 3(A) is a precise fundamental domain of Γ, which contains three

geodesics rays in D corresponding to 0, 1, and i∞. The Siegel sets and the
compact set C in (2.8) are illustrated in Figure 3(B).

D

0 1

(a) A fundamental set D

C

0 1

S1

S2 S3

(b) A fundamental domain Ω

Figure 3. Reduction theory of Garland and Raghunathan

The next lemma is also from [13], and will be used in our proof.

Lemma 13 ([13, Lemma 4.3]). Let kY : G→ K, aY : G→ AP , nY : G→ NP
be the natural projections of the Iwasawa decomposition G = K × AP × NP .
Let Y , Y ′ be distinct vectors in p1, and fY : R → R be a smooth function
satisfying aY ′(exp tY ) = exp fY (t)Y ′ where tY = sup{t | fY (t) = 0}. For any
M > 0, there exists β > 0 such that for all Y ∈ p1 satisfying ‖Y ′ − Y ‖ < β
and Y ′ 6= Y ,

(2.9) d(nY ′(exp tY Y ) · x0, x0) ≥M.
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Let us describe the geometric idea of Lemma 13 with the upper half-plane H.
Each vector Y ∈ p1 is identified with a unique point at infinity in H(∞). Let
PY ⊂ SL2(R) be the corresponding parabolic subgroup. For t ∈ R, a horocycle
of level t at Y is the set St,Y = {g · i ∈ H | aY (g)α = t, α ∈ Φ+(PY , APY )}
(cf. Figure 4(A)). Note that the base point i always lies on the horocycle of
level 0. For another vector Y ′ ∈ p1, let tY be the level of the horocycle tangent
to S0,Y ′ at z0. The distance (2.9) is the distance between i and z0. Lemma
13 states that as Y approaches to Y ′ the distance between i and z0 diverges
(cf. Figure 4(B)).

b
S0,Y

Y Y ′

S0,Y ′

b

b b

StY ,Y

z0

i

(a) The constant tY

b

Y Y ′

S0,Y ′

b

b b

StY ,Y

z0

i

(b) The behavior of tY

Figure 4. A geometric idea of Lemma 13

3. Proof of the main theorem

In this section, we give proof of our main theorem.

(1) In §3.1, we construct a Γ-space XΓ, and describe its topology.
(2) In §3.2, we define the action of Γ on XΓ. In Proposition 17, we show

that the Γ-action on the symmetric space X extends continuously on
XΓ. In Proposition 20, we show that the Γ-action is proper.

(3) In §3.3, we prove that the space XΓ is a model for the classifying space
EΓ. In Proposition 24, we show that for any finite subgroup H of Γ

the fixed point set
(
XΓ

)H
is contractible.

3.1. Construction of the space XΓ

Let G be a semisimple algebraic Lie group of R-rank 1. Let G = G(R) and
K be a maximal compact subgroup of G and X = G/K be the corresponding
symmetric space. Since the R-rank is 1, the boundary symmetric space XP is a
one-point space. Thus for any real parabolic subgroup P ⊂ G, the horospherical
decomposition is X ∼= NP ×AP .

Definition 14. Let Γ be a non-uniform lattice in G. A parabolic subgroup
P ⊂ G is called Γ-rational if the intersection Γ ∩NP is a cocompact lattice in
NP .
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Let ∆Γ be the collection of all Γ-rational parabolic subgroups in G. For each
parabolic subgroup P , define e(P ) = NP . Let XΓ be the union

XΓ = X ∪
∐
P∈∆Γ

e(P ),

with the following convergence class of sequences C:
(S1) yj

C−→ y∞ if yj → y∞ in X;

(S2) nj
C−→ n∞ if yj → n∞ in NP ;

(S3) yj
C−→ n∞ if there exists a Γ-rational parabolic subgroup P ⊂ G such

that (a) yj = (nj , aj) ∈ X = NP × AP , (b) nj → n∞ in NP , and (c)
aαj →∞ for α ∈ Φ+(P,AP ).

Lemma 15. The collection of following subset of XΓ form a closed basis:

(C1) A closure (in XΓ) of an open subset in X;
(C2) A closed subset in

∐
P∈∆Γ

e(P ).

Proof. Let A be a closed subset. If A ∩ X = ∅, then A is of the type (C2).
Suppose that A ∩X 6= ∅ and yj ∈ A be a convergent sequence in X. Then yj
is essentially of the type (S1) or (S3). If yj is of the type (S1), then yj lies on
a closed subset of X, which is of the type (C1). If yj is of the type (S2), then
yj lies on the closure of a Siegel set in X, which is of the type (C2). �

Proposition 16. The collection of following subsets of XΓ form an open basis:

(O1) Open subsets in X;
(O2) the unions of Siegel sets.

Proof. First, we show that subsets of types (O1) and (O2) are open (in XΓ).
Let V1 be a subset of the type (O1). Then

XΓ − V1 = (X − V︸ ︷︷ ︸
type (C1)

) ∪
∐
P∈∆Γ

e(P )︸ ︷︷ ︸
type (C2)

.

Now let V2 be a subset of the type (O2). Then

XΓ − V2 = (e(P )− U) ∪ (X −SP,U,t) ∪
⋃

Q∈∆Γ, Q 6=P
e(Q).

We claim that XΓ − V2 is the closure (in XΓ) of X −SP,U,t. Note that

X −SP,U,t = ((NP − U)×AP,t) ∪ (NP × (AP −AP,t)) .
Thus e(P ) − U is contained in the closure of X − SP,U,t. Let Q 6= P be a
Γ-rational parabolic subgroup. We can choose sufficiently large T � 1 such
that SQ,U ′,T ∩SP,U,t = ∅. Thus e(Q) is contained in the closure of X−SP,U,t.

To claim that the collection of subsets of the types (O1) and (O2) is an open
basis of XΓ, it suffices to show that the complement of each types of closed
set can be generated by open sets of types (O1) and (O2). Let C1 be a closed
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set of type (C1). If C1 is bounded, then for each P ∈ ∆Γ, then there exists a
sufficiently large constant TP � 1 such that SP,NP ,tP ∩ C1 = ∅. Thus

XΓ − C1 = (X − C1︸ ︷︷ ︸
type O1

) ∪
⋃

P∈∆Γ

SP,NP ,tP ∪ e(P )︸ ︷︷ ︸
type O2

.

Let C2 be of the type (C2). Without loss of generality, assume C2 =
∐
P∈∆ CP

where ∆ ⊂ ∆Γ and CP is a closed subset in e(P ). For each P ∈ ∆, let us
denote UP = NP − CP . Then for any t > 0,

XΓ − C2 =
⋃

P∈∆Γ−∆

(SP,NP ,t ∪ e(P )︸ ︷︷ ︸
type O2

) ∪
⋃
P∈∆

(SP,UP ,t ∪ UP︸ ︷︷ ︸
type O2

).

�

3.2. The proper action of Γ on XΓ

We define the canonical action of Γ on X as in (2.2), (2.3). On a boundary
point n′ ∈ e(P ) = NP , we define the action of γ = k · p ∈ Γ as follows:

(3.1) γ · z = k(n(amn′)) ∈ e(kP ).

Proposition 17. The Γ-action on XΓ is continuous.

Proof. Since Γ is discrete, it is enough to show that for a fixed γ ∈ Γ and a
convergent sequence yj → y∞ in XΓ, the sequence γ · yj converges to γ · y∞.
The explicit actions (2.2), (2.3), (3.1) show that the statement holds for con-
vergent sequences of the type (S1) and (S2). Suppose that yj = (nj , aj ,mj)
is a convergent sequence of the type (S3). If γ = k · nam, then γ · yj =
k(n(am)nj ,

k(aaj),
k(mmj)). Let α ∈ Φ+(P,AP ) be a (unique) positive re-

stricted root. Since aαj →∞ as j →∞, (k(aaj))
αk = (aaj)

α = aαaαj →∞. �

Lemma 18. Let yj ∈ X be a convergent sequence of the type (S3). There is
no infinite sequence γj of Γ where y′j = γj · yj ∈ X is a convergent sequence of
the type (S1).

Proof. We suppose that there is a sequence γj such that y′j → y′∞ ∈ X, and
show that this leads to a contradiction. Since Γ is discrete, there exists ε > 0
such that d(γ · y′∞, y′∞) > ε for all γ ∈ Γ. Thus

2d(y′∞, y
′
j) + d(γ · y′j , y′j) = d(γ · y′∞, γ · y′j) + d(γ · y′j , y′j) + d(y′j , y

′
∞)

≥ d(γ · y′∞, y′∞) > ε > 0.(3.2)

For a positive ε′ > 0 such that ε′ < ε, we can choose a sufficiently large N � 1
such that

(3.3) 2d(y′∞, y
′
j) < ε′ < ε for all j > N.

From (3.2) and (3.3), for every nontrivial γ ∈ Γ and j > N ,

(3.4) d(γ · y′j , y′j) > ε− ε′ > 0.
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Note that both ε and ε′ do not depend on the choice of γ. For a non-trivial
element γ ∈ Γ∩NP , let γ′j = γjγγ

−1
j . Since d(γ·yj , yj)→ 0, we get d(γ·yj , yj) =

d(γjγ · yj , y′j) = d(γ′j · y′j , y′j)→ 0. This contradicts (3.4). �

Proposition 19. Let P1, . . . , Pn be the parabolic subgroups in (2.8). A par-
abolic subgroup P ⊂ G is Γ-rational if and only if it is Γ-conjugate to Pi for
some i = 1, . . . , n.

Proof. From Theorem 12 and Definition 14, all such Pi are Γ-rational. Con-
versely, let P be a Γ-rational parabolic subgroup of G such that P 6= Pi for all
i = 1, . . . , n. We will show that there exists γ ∈ Γ such that γP = Pi for some
i.

Let Y ∈ p1 be the vector corresponding to P . For unbounded sequence tj > 0
and a fixed point x0 ∈ X, let yj = exp tjY · x0 be a unbounded sequence. By
Theorem 12, yj /∈ D(x0,Γ) for all but finitely many j. For each j, choose an
element γj ∈ Γ such that γj · yj ∈ D(x0,Γ). Let us denote y′j = γj · yj . By
Lemma 18, the sequence y′j is unbounded. Again by Theorem 12, a subsequence
of y′j lies on one of Siegel sets in (2.8), say SP ′,U ′,t′ .

Let Yj ∈ p1 be the vector corresponding to γjP . Since p1 is compact, Yj
converges to Y∞ ∈ p1. Let Y ′ ∈ p1 be the vector corresponding to P ′. We
claim that Y ′ = Y∞. If not, for any given Siegel set S∞ relative to Y∞, there
exist a sufficiently large t′ � 1 such that the Siegel set SP ′,U ′,t′ is disjoint from
S∞. This is a contradiction.

Suppose that Yj 6= Y ′ for all j. By Lemma 13, as Yj → Y ′ the sequence
x′j = nY ′(exp tYjY ) · x0 diverges in NP ′ . This implies that the sequence xj =
γjx′j ∈ NP also diverges in NP . Recall that xj = nY (yj). Since yj lies in
a Siegel set SP,U,t, the sequence xj lies in U . Since P is Γ-rational, the set
U is relatively compact. Thus the sequence xj must be bounded, which is a
contradiction. Therefore, Yj = Y ′ for some j, and thus γjP = Pi. �

Proposition 20. The Γ-action on XΓ is properly discontinuous.

Proof. Since Γ is discrete, it is enough to show that for every compact subset
C in XΓ, the set Γ′ = {γ ∈ Γ | γ · C ∩ C 6= ∅} is finite. Let C be a compact
subset of the type (C1) in XΓ. If C ⊂ X, then Γ′ is finite, since the Γ-action
on X is properly discontinuous. Otherwise, without loss of generality, we can
assume C is of the form C = SP,U,t where P ∈ ∆Γ, t > 0, and U is a relatively
compact open subset of NP . By Proposition 19, such C is Γ-conjugate to the
closure SPi,Ui,ti for some Pi in (2.8). By Theorem 12, the set Γ′ is finite. �

3.3. The space XΓ as a model for EΓ

Lemma 21. The space XΓ is an analytic manifold with boundary.

Proof. For each Γ-rational parabolic subgroup P ⊂ G, let ψP : NP
∼=−→ Rn,

α : AP
∼=−→ R>0 be the canonical diffeomorphisms. From Proposition 19 and
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Lemma 16, the collection A = {X ∪ e(P ) | P ∈ ∆Γ} is the open covering of
XΓ. The map define on X ∪ e(P ) by

φP (z) =

{
(ψP (n), 1/aα) if z = (n, a) ∈ NP ×AP ∼= X,

(ψP (z), 0) if z ∈ NP = e(P ).

is the local chart on XΓ.
For two Γ-rational parabolic subgroups P 6= Q, choose k ∈ K such that

P = kQ. Then we have the following diagram commutes:

NQ ×AQ
k-conj. // NP ×AP

φP

��
Rn × R>0

φ−1
Q

OO

φP ◦φ−1
Q // Rn × R>0

Since the G-action is analytic and the maps φP and φQ are diffeomorphisms,

the transition map φP ◦ φ−1
Q is analytic. �

Proposition 22. The space XΓ has a Γ-CW-complex structure.

Proof. The space XΓ is a subanalytic manifold of its double cover (cf. [19,
Definition 3.2]). By [19, Theorem B], the space XΓ admits a Γ-CW-complex
structure. �

Proposition 23. Let Ω be the fundamental set of Γ in X defined in (2.7).
Then the closure Ω in XΓ is a compact fundamental set for Γ.

Proof. The compactness follows from the fact that every Ui ⊂ NPi is relatively
compact. By Proposition 19 and Theorem 12, the closure Ω is a locally finite
subset of XΓ satisfying Γ · Ω = XΓ. �

Proposition 24. For any finite subgroup H ⊂ Γ, the fixed point set
(
XΓ

)H
is

contractible.

Proof. From Proposition 22 and Proposition 23, the space XΓ is a cofinite Γ-
CW-complex. By Proposition20, every isotropy group is finite. Let H be a
non-trivial finite subgroup of Γ. If H fixes a point on the boundary component
e(P ), then it fixes a geodesic ray converging to that point. Thus the fixed

point set
(
X
)H

retracts into XH . Since the fixed point set XH is a geodesic

submanifold of X, the set
(
X
)H

is contractible.

It remains to show that the space XΓ itself is contractible. We will first
construct a retraction ht of Ω, and then extends it to the retraction Ht of XΓ.
For each i = 1, . . . , n, let SPi,Ui,ti be the mutually disjoint Siegel sets from
(2.8) and αi the unique positive simple root in Φ+(Pi, APi). Since the R-rank
of G is 1, the map αi : APi → R> is a diffeomorphism. Thus, for any 0 < t ≤ 1,
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there exists a unique element ai(t) ∈ APi such that αi(ai(t)) = ti/t. Let us
define a map ht : Ω× [0, 1]→ Ω as follows (cf. Figure 5(A)):

ht(z) =

 z if z ∈ Ω−⋃ni=1 SPi,Ui,ti/t,
(n, ai(t)) if z ∈ SPi,Ui,ti/t and z = (n, a) ∈ NPi ×APi ,
(z, ai(t)) if z ∈ U i,

h0(z) = z.

We claim that ht is continuous. Let z be a point in the interior Ω. For
sufficiently small ε > 0, the point z does not belong to any Siegel sets SPi,Ui,ti/t

for all t < ε and i = 1, . . . , n. Let z be a point on the boundary e(Pi) for
some i = 1, . . . , n. As t → 1, the path s(t) = h1−t(z) approaches to z. Let
APi(ti) = {a ∈ APi | αi(a) = ti}, SPi,Ui,ti = U i ×APi(ti). Then the homotopy

retract h1(Ω) is C ∪⋃ni=1 SPi,Ui,ti (cf. Figure 5(B)).

Now we extend ht to Ht. For each z ∈ XΓ, choose an element γ ∈ Γ such
that γ ·z ∈ Ω. Define Ht : XΓ× [0, 1]→ XΓ as Ht(z) = γ−1 ·ht(γ ·z). We claim
that Ht : X × [0, 1] → X is well-defined. For a point z ∈ XΓ, suppose that
there are two distinct elements γ1, γ2 ∈ Γ such that γ1 · z 6= γ2 · z ∈ SPi,Ui,ti

for some i = 1, . . . , n. For each j = 1, 2, the path sj(t) = h1−t(γj · z) eminates
from sj(0) = γj · z. Let us extends sj(t) a semi-infinite geodesic s̃j(t). Then

s̃1(∞) = s̃2(∞) is fixed by the element γ2γ
−1
1 ∈ P . Since Γ∩P = Γ∩NP , we get

γ2γ
−1
1 ht(γ1z) = ht(γ2z). The homotopy retract of XΓ is then the union of all

Γ-translates of h1(Ω). Since SPi,Ui,ti ⊂ (Γ∩NPi) ·C, we have H1(XΓ) = Γ ·C.
So Ht is well-defined.

C

0 1

S1

S2 S3

U1

U2 U3

(a) The homotopy retraction ht

C

0 1

AP1(t1)× U1

AP2(t2)× U2 AP3(t3)× U3

(b) The retract ht(Ω)

Figure 5. Contractibility of the space XΓ

In conclusion, the space XΓ contracts into C which is contractible. There-
fore, XΓ is contractible. �
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