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GROUP GRADED TYPES OF BÉZOUT MODULES

Mamoon Ahmed and Fida Moh’D

Abstract. In this paper, we introduce two group graded types of Bézout

modules, namely graded-Bézout modules and weakly graded-Bézout mod-

ules, which are two Bézout versions in Graded Module Theory. We in-
vestigate the relationship among the three types of Bézout modules, the

ordinary Bézout modules and the two graded types of Bézout modules.
Also, we study the structure of these new Bézout modules along with

different properties; for instance, “A graded-Bézout R-module, with R

being a Noetherian ring, is Noetherien iff it is gr-Noetherian”.

1. Introduction

Many concepts in Algebra have been extended to graded ring and module
theories where the gradation has its impression on these concepts. For instance,
gr-simple modules and gr-Noetherian modules are the extensions of simple
modules and Noetherian modules, respectively. A similar idea exists in graded
ring theory when we talk about gr-maximal ideals, gr-Jacobson radicals,. . . etc.

Because of its importance in module theory, the concept of Bézout mod-
ules is extended in this paper to two types of Bézout modules that involve
the group gradation (the graded types of Bézout modules). The first type is
graded-Bézout modules (or gr-Bézout modules) in which every finitely gener-
ated submodule with homogeneous generators is cyclic with a homogeneous
generator. The second type is weakly graded-Bézout modules (or weakly gr-
Bézout modules) which satisfy the Bézout property for the graded submodules.
These possible extensions of Bézout modules might help extend the results con-
cerning the Bézout property in the ordinary algebra to similar results in graded
ring and module theories analogous to the work presented in [1] or [5].

This paper studies the relationship among the three types of Bézout mod-
ules: the Bézout graded modules (Bézout modules with group gradation), the
gr-Bézout modules, and the weakly gr-Bézout modules. Also, the paper in-
vestigates the structure of the graded types of Bézout modules such as the
properties of the homogeneous components that build the body of the graded
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t2 M. AHMED AND F. MOH’D

types of Bézout modules. Further, we study the relationship between gr-Bézout
modules and gr-Noetherian modules, and we show some results explaining how
to generate new gr-Bézout modules from old ones.

Section 2 includes the background necessary to this paper.
In Section 3, we study the relationship among the three types of Bézout

modules. The relationship is like whether any type of them implies the others.
The scope behind this relationship is when gr-Bézout modules are equivalent to
either graded type of Bézout modules, it is easier to deal with the new types of
Bézout modules since the amount of possible generators (homogeneous elements
only) in the new types is less than those in the original type (Bézout modules).

In Section 5, we focus on the structure of gr-Bézout modules following dif-
ferent trends. For example, what components make a module gr-Bézout? If M
is gr-Bézout what can one say about the homogeneous components? Or, if M
is a gr-Bézout R-module, what can we say about R?

In Section 6, we show that for gr-Bézout modules, gr-Noetherian and Noe-
therian properties are equivalent. Also, not widely, we list some results that
illustrate gr-Bézout modules generating new ones.

2. Preliminaries

This section presents some necessary background of graded rings and graded
modules considered in this paper. More details can be found in [1,5]. Through-
out this paper, unless otherwise stated, G is a group with identity e, R =

⊕
g∈G

Rg

is a G-graded ring with unity 1, and M =
⊕
g∈G

Mg is a G-graded left R-module.

The set supp(R,G) = {g ∈ G : Rg 6= 0} is called the support of R. The support
ofM , supp(M,G), is defined similarly. The set h(R) =

⋃
g∈G

Rg (h(M) =
⋃
g∈G

Mg,

respectively) is called the set of homogeneous elements of the graded ring R
(the graded module M , respectively). All modules considered in this article
are left modules. Moreover, all groups, rings, and modules are assumed to be
non-trivial.

Definition 2.1 ([1]). Let M be a G-graded R-module (an R-module). By a
gr-cyclic (a cyclic, respectively) R-submodule of M we mean a cyclic submod-
ule with a homogeneous generator (a generator, not necessarily homogeneous,
respectively).

Remark 2.2. Evey gr-cyclic R-submodule of M is G-graded. A cyclic submod-
ule with non-homogeneous generator might not be graded as illustrated in the
next example.

Example 2.3. Let R = M2[Z2] be the ring of 2× 2 matrices with entries from
Z2. The ring R is Z3-graded by R0 = [ a 0

0 d ], R1 = [ 0 b
0 0 ], and R2 = [ 0 0

c 0 ], where
a, b, c, d ∈ Z2.
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The principal ideal generated by the non-homogeneous matrix [ 0 1
0 1 ] is Z3-

graded. However, the principal ideal generated by the non-homogeneous matrix
[ 0 0
1 1 ] is not Z3-graded.

Definition 2.4. A G-graded R-module M is called gr-torsion free (torsion
free) if for every r ∈ h(R) − {0} and m ∈ h(M) − {0}, rm 6= 0 (if for every
r ∈ R− {0} and m ∈M − {0}, rm 6= 0, respectively).

Definition 2.5 ([1]). A G-graded ring R (A ring R) is called a gr-domain (a
domain, respectively) if there are no zero divisors in h(R) (in R, respectively)
except 0.

Definition 2.6 ([6]). A G-graded R-module is said to be flexible if M = RMe.

Proposition 2.7 ([6]). A graded R-module is flexible if and only if Mg =
RgMe, for every g ∈ G

Proposition 2.8 ([6]). Every graded submodule of a flexible module is flexible.

Definition 2.9 ([4]). Let M be an R−module, N an R-submodule of M , and
S a nonempty subset of M . We define (N :R S) = {r ∈ R : rS ⊆ N}. The
annihilator of a nonempty set S of M is defined by AnnR(S) = (0 : S). If
S = {x}, we write AnnR(S) = AnnR(x). If AnnR(x) = 0, we say that x is an
R−torsion free element.

It is easy to see that the annihilator of a set forms a left ideal of R.

Definition 2.10 ([5]). By a gr-Noetherian (a Noetherian) R-module we mean
a graded R-module (an R-module, respectively) which satisfies the ascending
chain condition on gr-submodules (on R-submodules, respectively), or equiva-
lently in which every graded R-submodule (every R-submodule, respectively)
of M is finitely generated.

Definition 2.11 ([5]). An R-module homomorphism f : M −→ N between G-
graded R-modules is called a gr-homomorphism if f(Mg) ⊆ Ng, for every g ∈
G. If in addition f is an R-module isomorphism, we say f is a gr-isomorphism.
In this case we have f(Mg) = Ng, for every g ∈ G.

Definition 2.12 ([3]). An R-module is Bézout if every finitely generated R-
submodule is cyclic (i.e., generated by one element).

3. Graded types of Bézout modules and Bézout modules

In this section, we exhibit the relationship among the three types of Bézout
modules. Although the three types are not equivalent, we demonstrate that,
under certain circumstances, one type may imply the other types or one of
them.

Definition 3.1. A G-graded R-module is said to be a graded-Bézout R-module
(or gr-Bézout) if every finitely generated R-submodule with homogeneous gen-
erators is gr-cyclic.
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Definition 3.2. A G-graded R-module is said to be a weakly graded-Bézout R-
module (or weakly gr-Bézout) if every finitely generated graded R-submodule
is cyclic.

We shall be careful about the terminology and distinguish between the three
types of Bézout modules. The Bézout graded modules are Bézout modules
that are given a gradation. That is, the gradation does not affect the Bézout
property. The graded-Bézout modules are graded modules satisfying Definition
3.1, while the weakly graded-Bézout modules are graded modules that satisfy
the Bézout property for graded submodules.

Lemma 3.3. Let M be a G-graded R-module. A finitely generated R-submodule
of M is graded if and only if it is generated by homogeneous elements. In fact,
every finitely generated graded submodule is generated by the homogeneous com-
ponents of its generators.

Proof. It is easy to see that a finitely generated submodule of a graded module
with homogeneous generators is graded. Suppose N =

∑n
i=1Rai is a graded

submodule of M , where a1, . . . , an ∈ M . Let ai = a
(1)
i + · · · + a

(ki)
i , where

a
(1)
i , . . . , a

(ki)
i ∈ h(M) for every i = 1, . . . , n. We have N ⊆

∑n
i=1

∑ki
j=1Ra

(j)
i .

Since N is graded, a
(j)
i ∈ N for all j = 1, . . . , ki and i = 1, . . . , n. Thus Ra

(j)
i ⊆

N for all j = 1, . . . , ki and i = 1, . . . , n and hence
∑n
i=1

∑ki
j=1Ra

(j)
i ⊆ N . So,

N =
∑n
i=1

∑ki
j=1Ra

(j)
i . �

The following corollary states that if a graded cyclic R-submodule has a
generator whose homogeneous component owns a zero R-annihilator, then this
generator is homogeneous with the same degree of that component and the
cyclic R-submodule turns out to be gr-cyclic.

Corollary 3.4. Let M be a G-graded R-module and Ra be a non-trivial graded
cyclic R-submodule. If AnnR(ag) = 0, where ag is a nonzero homogeneous
component of a, then a is homogeneous of degree g and hence Ra is gr-cyclic.

Proof. Let a =
∑
h∈G

ah. Since Ra is graded, ag ∈ Ra. Let r =
∑
σ∈G

rσ such

that ag = ra. Then ag =
∑
σ∈G

rσag +
∑

σ∈G,h∈G−g
rσah. Since the right side of

the last equality is homogeneous of degree g, all nonzero terms of
∑
σ∈G

rσag are

homogeneous of degree g. So σ = e for all rσ 6= 0 and hence r ∈ Re. This
implies that a is homogeneous of degree g and that Ra is gr-cyclic. �

Proposition 3.5. Every graded submodule of a gr-Bézout (a weakly gr-Bézout)
module is gr-Bézout (a weakly gr-Bézout, respectively).

Proof. The proof follows directly from Definitions 3.1, 3.2, and Lemma 3.3. �

Proposition 3.6. Bézout graded modules and gr-Bézout modules are weakly
gr-Bézout modules.
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Proof. The proof follows directly from Definitions 2.12, 3.1, 3.2, and Lemma
3.3. �

In view of Lemma 3.3, we can assume without loss of generality in Definition
3.2 that every finitely generated submodule possesses homogeneous generators.
Generally, the three types of Bézout modules are not equivalent. For instance,
A gr-Bézout module is not necessarily a Bézout module, for there perhaps exists
a non-graded finitely generated submodule which is not cyclic. Also, a weakly
gr-Bézout module is not necessarily a gr-Bézout module because there may
exist a finitely generated graded submodule which is not gr-cyclic, as shown
later in Example 4.2. Our task now is to find out when the three types are
equivalent. We list some results about this issue.

Proposition 3.7. Let M be a graded R-module such that every submodule of
M is graded. Then

(1) M is weakly gr-Bézout if and only if M is Bézout.
(2) If M is gr-Bézout, then M is Bézout.

Proof. (1) The proof is trivial.
(2) Suppose M is gr-Bézout. Let N be a finitely generated submodule of

M . By assumption and Lemma 3.3, N is finitely generated with homogeneous
generators. Since M is gr-Bézout, N is gr-cyclic. Thus, M is Bézout. �

The converse of part 2 in Proposition 3.7 is not always true because not every
graded cyclic submodule is gr-cyclic. This leads us to the following theorem.

Theorem 3.8. Let M be a G-graded R-module. Then

(1) The concepts of Bézout and gr-Bézout modules are the same for an
R-module M if and only if the concepts of cyclic R-submodules and
gr-cyclic R-submodules of M are the same.

(2) Every weakly gr-Bézout module M is gr-Bézout if and only if the con-
cepts of graded cyclic submodules and gr-cyclic submodules of M are
the same.

(3) If M is Bézout and has the property that every graded cyclic R-sub-
module is gr-cyclic, then M is gr-Bézout.

Proof. The proofs of (1) and (2) are not difficult. The proof of (3) depends on
part (2) and Proposition 3.6. �

Proposition 3.9. Suppose that R is a local ring and M is a G-graded R-
module. If M is Bézout, then M is gr-Bézout.

Proof. The proof follows from Theorem 3.8 and Proposition 3 of [2]. �

Next, we show in gr-torsion free modules, when graded cyclic and gr-cyclic
modules are equivalent, that the three types of Bézout modules are approaching
each other.
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Theorem 3.10. Suppose M is a gr-torsion free R-module. Then the two group
graded types of Bézout modules are equivalent. In addition, if M is Bézout, then
it is gr-Bézout.

Proof. The proof is immediate from Corollary 3.4 and Theorem 3.8. �

Corollary 3.11. If R is a Bézout gr-domain, then it is a gr-Bézout gr-domain.

Proof. The proof follows from the fact that a graded gr-domain is a gr-torsion
free module over itself along with Theorem 3.10. �

4. Examples

The aim of this section is to illustrate the three definitions of Bézout modules
and exhibit the relationship between them. The main example of this section
(Example 4.6) shows that there is an example of a Bézout graded module which
is not a gr-Bézout module.

The following examples are applications of Corollary 3.11. Example 4.1
exhibits a Bézout and gr-Bézout module, although not every submodule of
which is graded, whereas Example 4.2 exhibits a graded module which is neither
gr-Bézout nor Bézout.

Example 4.1. Let R = K[x], where K is a field, and G = Z the group of
integers. Since R is a Euclidean domain, and hence a PID, we have that R is
a Bézout domain. R is Z-graded by R0 = K, Rn = Kxn, and R−n = 0, for
all n = 1, 2, . . .. Let N = Rxn + Rxm. If m ≥ n ≥ 1, then N ⊆ Rxn ⊆ N or
N = Rxn, i.e., N is gr-cyclic. If m ≥ n = 0, then N = R + Rxm = R which
is gr-cyclic. Thus, we obtain that R is a gr-Bézout ring (a gr-Bézout module
over itself).

Example 4.2. Let M = K[x], where K is a field, and G = Z. Give M the
gradation given in Example 4.1 and K the trivial gradation by Z. Consider
M as a graded vector space over K. By Lemma 3.3, the only nonzero gr-
cyclic submodules are Kxn, where n = 0, 1, . . .. Thus, M contains non-graded
submodules. Since it is impossible for the graded subspace K + Kx to be gr-
cyclic, it follows that M is not a gr-Bézout K−module. Also, by Lemma 3.3, it
is impossible for K +Kx to be cyclic. So, M is also not a Bézout K−module.

Practically, we apply Theorem 3.8, Proposition 3.9, or Theorem 3.10 to show
that a graded module is Bézout by considering only homogeneous generators
instead of arbitrary generators. The following example exposes this idea.

Example 4.3. Consider the Abelian group of Gaussian integers M = Z⊕ iZ,
where i =

√
−1, as a Z-module. The domain Z is Z2-graded by the trivial

gradation, and M is a gr-torsion free Z2-module graded by M0 = Z and M1 =
iZ. Consider the graded submodule N = 2Z⊕iZ. It is easy to see that N 6= mZ
and N 6= imZ for every m ∈ Z. Which means that it is impossible for N to
be generated by a homogeneous element of M . So M is not gr-Bézout. Now,
Theorem 3.10 guarantees that M is not Bézout.
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Another usage of the above results is to prove that a graded module is gr-
Bézout using the fact that Bézout modules are already studied in the literature.
That is, the possibility of replacing a generator of a cyclic submodule with a
homogeneous generator. The following example illustrates the last statement.

Example 4.4. Recall Example 2.3. Since the entries of the matrix ring are
taken from a field, R is a Bézout ring (see Section C.36 of [4]). Direct compu-
tations show that a cyclic module is graded if and only if it has a homogeneous
generator. Thus, Theorem 3.8 implies R is a gr-Bézout ring.

Now we present an example of a gr-Bézout domain which is not a PID.

Example 4.5. Let R = Z+xQ[x]. Then R is a Bézout domain but not a PID.
Set a Z2-gradation for R as follows:

R0 ={a0+a1x
2+a2x

4+· · ·+anx2n : n = 0, 1, 2, . . . ; a0∈Z; and a1, . . . , an∈Q}

and

R1 = {b1x+ b2x
3 + · · ·+ bmx

2m−1 : m = 1, 2, . . . and b1, . . . , bm ∈ Q}.

By Corollary 3.11, R is a gr-Bézout domain but not a PID.

The next example shows that there is an example of a Bézout graded mod-
ule that is not a gr-Bézout module. Which demonstrates the non-equivalence
between Bézout and gr-Bézout properties in the general situation.

Example 4.6. Consider the ring M = Z2 ⊕ Z4 and its subring R = Z2 ⊕ 〈2〉,
where 〈2〉 is the cyclic subgroup of Z4 generated by 2. We have M is a Z2-
graded R-module, where R has the trivial gradation and the gradation of M
is defined by M0 = Z2 ⊕ 0 and M1 = 0 ⊕ Z4. Direct calculations show that
the sum of any two cyclic R-submodules is again cyclic. This means that M
is a Bézout R-module. However, M is not a gr-Bézout R-module because
R(1, 0) + R(0, 1) = R(1, 1) = R(1, 3) can’t be generated by any homogeneous
element, and (1, 1) and (1, 3) are not homogeneous.

5. Structure of gr-Bézout modules

This section is devoted to study the structure of gr-Bézout modules such as
whether the components of gr-Bézout modules carry the Bézout property or
not.

Proposition 5.1. Suppose that Rg is a cyclic Re-module for all g ∈ G, and
M is a gr-Bézout R-module. Then Me is a Bézout Re-module.

Proof. Let N = Rea + Reb, where a, b ∈ Me. Then L = Ra + Rb is a finitely
generated R-submodule of M . Because M is gr-Bézout, L = Rc, where c ∈Mg,
for some g ∈ G. Hence, N = Le = Rg−1c = (Ret)c, where t ∈ Rg−1 . So,
N = Re(tc), and tc ∈ Me. Consequently, N is a cyclic Re-submodule of Me

and hence Me is a Bézout Re-module. �
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The converse of Proposition 5.1 is not generally true, for instance consider
the graded module given in Example 4.3. A partial converse of Proposition 5.1
is given in the following proposition.

Proposition 5.2. Suppose that M is a flexible R-module and Rg is a cyclic
Re-module for all g ∈ supp(R,G). If Me is a Bézout Re-module, then M is a
gr-Bézout R-module.

Proof. Assume Rg = Rerg, where rg ∈ Rg and g ∈ G. Let N = Rag + Rah,
where ag, ah ∈ h(M) and g, h ∈ G. If either ag = 0 or ah = 0, then N is
gr-cyclic. Assume ag 6= 0 and ah 6= 0. We have Ne = Rg−1ag + Rh−1ah =
Rerg−1ag + Rerh−1ah is a finitely generated Re-submodule of Me. Since Me

is a Bézout Re-module, we obtain that Ne = Rexe, where xe ∈ Me. Since
M is a flexible R-module, by Proposition 2.8, N is a flexible R-module and
hence N = RNe = RRexe = Rxe. So, N is gr-cyclic. Consequently, M is
gr-Bézout. �

The following lemma and proposition are true for graded and ungraded cases.
We present both results for ungraded case. The lemma has a simple proof and
well-known in the literature, whereas the proof of the proposition might exist
in the literature. Proposition 5.4 states that a cyclic regular module over a
Bézout ring is a Bézout module.

Lemma 5.3. If M = Ra and N is an R-submodule of M , then N = (N :R a)a.

Proposition 5.4. If R is a Bézout ring and X is a free R-module of dimension
1 (i.e., a cyclic R-module with a generator x such that AnnR(x) = 0), then X
is a Bézout R-module.

Proof. Let N = Rz + Ry, where z, y ∈ X. By Lemma 5.3, N = (N :R x)x,
Rz = (Rz :R x)x, and Ry = (Ry :R x)x. Since AnnR(x) = 0, we get

(N :R x) = (Rz :R x) + (Ry :R x).

Moreover, from Rz = (Rz :R x)x, we can write z = r1x, for some r1 ∈ (Rz :R
x). Thus, (Rz :R x)x = R(r1x). Again, the fact that AnnR(x) = 0 yields
(Rz :R x) = Rr1. That is, (Rz :R x) is a principal ideal of R. Similarly,
(Ry :R x) is a principal ideal of R. It follows that, (N :R x) is a principal ideal
because R is a Bézout ring. So, (N :R x) = Rw, for some w ∈ R. Consequently,
N = R(wx) which is a cyclic R−submodule of X. Therefore, we obtain that
X is a Bézout R-module. �

Examples 4.1 and 4.2 show that there is an example of a gr-Bézout module
that is not a Bézout Re-module. However a graded R-module which is an Re-
Bézout module is a gr-Bézout module. This is demonstrated in Proposition
5.5, which provides us with a useful method to build gr-Bézout modules.

Proposition 5.5. If M is a graded R-module such that M is a Bézout Re-
module, then M is gr-Bézout.
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Proof. Suppose M is a graded R-module which is a Bézout Re-module. Let
L = Rxg + Ryh, where xg, yh ∈ h(M). Since M is a Bézout Re-module, we
have Rexg + Reyh = Rezk, where zk ∈ h(M). There exist αe, βe ∈ Re such
that xg = αezk and yh = βezk. Thus, we get that k = g = h. Hence

Rzg = R(Rezg) = R(Rexg +Reyg)

⊆ RRexg +RReyg

⊆ Rxg +Ryg = Rαezg +Rβezg

⊆ Rzg +Rzg = Rzg.

Finally, we obtain that L = Rxg +Ryh = Rzg. So, M is a gr-Bézout. �

Given a graded R-module M , if R is a gr-Bézout ring, then M is not nec-
essarily a gr-Bézout R-module; Example 4.2 demostrates the last statement.
Now, we try to answer the questions: “If R is a gr-Bézout ring, what conditions
should be applied to M to transfer it to a gr-Bézout R-module?” and “If M is
a gr-Bézout R-module, is R necessarily a Bézout ring?”. An answer to the first
question is given in Proposition 5.6, whereas an answer for the second question
is given in Proposition 5.7.

Proposition 5.6. Let R be a gr-Bézout ring and M a flexible R-module such
that Me is a cyclic Re-module. Then M is a gr-Bézout R-module.

Proof. Suppose N = Rxg + Ryh, where xg, yh ∈ h(M), and g, h ∈ G. By
assumption, Mk = RkMe = RkReme = Rkme, where me ∈ Me, for every
k ∈ G. Hence, there exist rg ∈ Rg and rh ∈ Rh such that xg = rgme and
yh = rhme. Thus, N = (Rrg+Rrh)me. Since R is gr-Bézout, Rrg+Rrh = Rt,
for some t ∈ h(R). Hence, N = R(tm) with tm ∈ h(M). Therefore, M is a
gr-Bézout R-module. �

The next proposition is a partial converse of Proposition 5.6 for the graded
case when the underlying module is cyclic.

Proposition 5.7. Let M be a gr-Bézout R-module that contains an R-torsion
free homogeneous element. Then R is a gr-Bézout ring.

Proof. Let xk ∈ h(M) be an R-torsion free element and I = Rrg +Rrh, where
rg, rh ∈ h(R), and k, g, h ∈ G. Then Ixk = Rrgxk + Rrhxk. Since M is gr-
Bézout, there exists yf ∈ h(M), with f ∈ G such that Ixk = Ryf . So, yf = ixk
for some i ∈ I. Thus, i ∈ Rfk−1 . Now, we have Ixk = Rixk. Since xk is an
R-torsion free element, I = Ri is a gr-principle ideal. Consequently, R is a
gr-Bézout ring. �

6. Gr-Bézout modules and other types of graded modules

This section studies the relationship between gr-Bézout modules and other
types of graded modules such as gr-Noetherian modules, gr-simple modules, . . .
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etc. In addition, this section studies the possibility of generating new gr-Bézout
modules from old ones.

One of the issues that matters in graded ring theory is whether a gr-property
(a property that involves the group gradation such as gr-Noetherian, gr-semi-
simple, . . . etc) implies the same property without gradation (such as Noether-
ian, semisimple, . . . etc). The equivalence of the properties of being Noetherian
and of being gr-Noetherian was demonstrated under different settings and in
many articles. In the following theorem, which is the main theorem of this
section, we give new settings that guarantee this equivalence.

Theorem 6.1. Let M be a gr-Bézout R-module with R being a Noetherian
ring. Then, M is a Noetherian R-module if and only if M is a gr-Noetherian
R-module.

Proof. It is obvious that if M is Noetherian, then it is gr-Noetherian. Suppose
M is gr-Noetherian andN is anR-submodule ofM . Fix x = xg1+· · ·+xgn ∈ N ,
where xg1 , . . . , xgn ∈ h(M). We have x ∈ Rxg1 + · · · + Rxgn . Because M is
gr-Bézout, there exists ax ∈ h(M) such that Rxg1 + · · ·+Rxgn = Rax. Hence,
N ⊆

∑
x∈N

Rax. Since
∑
x∈N

Rax is a graded R-submodule of M and M is gr-

Noetherian,
∑
x∈N

Rax is finitely generated with homogeneous generators. Again,

since M is gr-Bézout,
∑
x∈N

Rax is gr-cyclic. Thus N ⊆ Ra, for some a ∈ h(M).

Now, N = (N :R a)a. Since R is Noetherian, (N :R a) = Rb1+· · ·+Rbm, where
b1, . . . , bm ∈ R. So, we get N = R(b1a) + · · · + R(bma) a finitely generated
submodule of M . Consequently, M is Noetherian. �

Next, we prove some results concerning generating new Bézout modules from
old ones.

Proposition 6.2. Let M be a gr-Bézout R-module and N a G-graded R-
submodule of M . Then, both N and M

N are gr-Bézout R-modules.

Proof. Recall that M
N is a G-graded R-module with gradation

(
M
N

)
g

=
Mg+N
N ,

for g ∈ G. It is easy to see that N is a gr-Bézout R-module. Let L =
R(a + N) + R(b + N), where a, b ∈ h(M). Then L = Ra+Rb+N

N . Since M

is gr-Bézout, Ra+Rb = Rc, for some c ∈ h(M). Thus L = Rc+N
N = R(c+N),

i.e., L is a gr-cyclic R-submodule of M
N . Therefore, M

N is gr-Bézout. �

The converse of Proposition 6.2 is not necessarily true. That is, if M is a
graded R-module which possesses a graded R−submodule N such that both
N and M

N are Bézout R-modules, then M needs not be a gr-Bézout R-module.

To see this, consider Example 4.3. If we set N = Z, we have N and M
N , which

is isomorphic to Z, are both gr-Bézout Z-modules. However M itself is not
a gr-Bézout R-module. The following proposition gives a partial converse of
Proposition 6.2.
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Proposition 6.3. Let M be a G-graded R-module. Suppose there is a graded
R-submodule N such that M

N and N + Rc are gr-Bézout R-modules, for all
c ∈ h(M). Then M is a gr-Bézout R-module.

Proof. Suppose N and M
N are gr-Bézout R-modules. Let L = Ra+Rb, where

a, b ∈ h(M). Then L+N
N = R(a+N)+R(b+N) ⊆ M

N . Because M
N is gr-Bézout,

there is c ∈ h(M) such that L+N
N = R(c+N) = Rc+N

N . The last equality yields
L ⊆ Rc + N . Since Rc + N is gr-Bézout, there exists d ∈ h(N) ⊆ h(M) such
that L = Rd. This proves that M is a gr-Bézout R-module. �

Propositions 6.2 and 6.3 produce the following theorem which provides a
criterion for a graded module to be gr-Bézout from a submodule and the related
quotient module .

Theorem 6.4. Let M be a G-graded R-module. Then M is a gr-Bézout R-
module if and only if there exists a G-graded R-submodule N of M such that
M
N is a gr-Bézout R-module and N + Rc is a gr-Bézout R-module for every
homogeneous element c of M .

The proof of the following proposition is straightforward.

Proposition 6.5. Let f : M −→ N be a gr-isomorphism between G-graded
R-modules. Then M is gr-Bézout if and only if N is gr-Bézout

Proposition 6.6. Let f : M −→ N be a gr-homomorphism between G-graded
R-modules. If M is a gr-Bézout R-module, then Im(f) is a gr-Bézout R-
module. Moreover, if f is an epimorphism, then N is a gr-Bézout R-module.

Proof. We have M
Ker(f)

∼= Im(f). Since M is gr-Bézout, by Proposition 6.2
M

Ker(f) is a gr-Bézout R-module. By Proposition 6.5, Im(f) is a gr-Bézout

R-module. The rest is obvious. �

Recall that if Mi is a Gi-graded Ri-module, for i = 1, 2, then M1 × M2

is a (G1 × G2)-graded (R1 × R2)-module with gradation (M1 ×M2)(g1,g2) =
Mg1 ×Mg2 , for each g1 ∈ G1 and g2 ∈ G2.

Proposition 6.7. Let Mi be a Gi−graded Ri−module, for i = 1, 2. Then
M1 ×M2 is a gr-Bézout (G1 ×G2)-graded (R1 ×R2)-module if and only if Mi

is a gr-Bézout Ri-module, for every i = 1, 2.

Proof. The proof is straightforward from Proposition 6.6. �
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