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SOME COMPOSITION FORMULAS OF JACOBI TYPE
ORTHOGONAL POLYNOMIALS

PRADEEP MALIK AND SAIFUL R. MONDAL

ABSTRACT. The composition of Jacobi type finite classes of the classi-
cal orthogonal polynomials with two generalized Riemann-Liouville frac-
tional derivatives are considered. The outcomes are expressed in terms of
generalized Wright function or generalized hypergeometric function. Sim-
ilar composition formulas are also obtained by considering the generalized
Riemann-Liouville and Erdéyi-Kober fractional integral operators.

1. introduction

It is evident from various research articles [3,4,8,17,22,23,25-27,32] that the
fractional calculus have wide applications in solving various integral equations,
ordinary differential equations and partial differential equations in applied sci-
ences like as turbulence and fluid dynamics, stochastic dynamical system, non-
linear control theory, nonlinear biological systems. As per the requirement,
the fractional integration and differential operators have gone through several
improvement and extensions, which can be seen in [1,2,9-14, 30, 31].

In this article, we will study the composition formula of fractional integration
given in [15,17,29,32] and the fractional derivatives given in [10] and [2]. Out-
comes of the composition are expressed in term of generalized hypergeometric
or Wright functions [28,33,34]. Similar type of work can be seen in [20,24] and
references therein.

For this purpose, first we will give a brief introductions about the fractional
integral operators and its generalization. Then two type generalized fractional
derivatives and its properties are discussed. At the end of this section, we
introduced the finite classes require in sequel.
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1.1. Riemann-Liouville fractional integrals and its generalization

The left and right-sided generalized integral transforms defined for x > 0
and complex «, 5,17 € C, and Re(«) > 0 are given in [15,17,29,32], respectively
as

(1.1) (Ig‘f’” ) (z) = xr(aa)ﬁ /Ow(x ) LR <a+ﬂ,n;a; 1- i) f(t)dt
o m
(If’B’"f) (x) = 1_‘(10[)/1; (t—x) 2 h R (a + B8, —m;a;1 — %) f)dte,

where I'(«) represents the gamma function [28] and Re(«) denotes the real part
of a.

The generalized hypergeometric function ,Fy(as---ap;c1---cq;x) is given by
the representation

o (a)k () g
(1.3) Fylar--ap;er--cqy) = ",
r : ! ,;) (e)r -+ (cg)r (D
where none of the denominator parameters can be zero or a negative integer
and (a), is the well-known Pochhammer symbol given by (A), = AMA+1),_1;
(Mo = 1. Results related to the generalized hypergeometric functions are
abundant in the literature. For example, see [28]. In particular, for p = 2 and
g = 1, we get the Gaussian hypergeometric function F(a, b; ¢; x) = 2 F1(a, b; ¢; )
is defined by
 (@n(®)n
2F1(a,b;c;a?) = L,
kZ:o (©)n(D)n
where a, b are complex numbers and ¢ € C\{0,—1, —2,...}. The series in (1.3)
is absolutely convergent for |z| < 1 and |z| = 1, when Re(c —a — b) > 0.
For = —a, (1.1) and (1.2) coincide respectively, with the classical left and
right-hand sided Riemann-Liouville fractional integrals [12,32] for > 0 of
order o € C, Re(a) > 0,

) (1578) @ = (15.0) @) = g5 [ @0 0. @>0
and

(15)  (I%7%7f) (2) = (I°F) () = ﬁ

If =0, (1.1) and (1.2) respectively, are the so-called Erdieyi-Kober fractional
integrals [32] defined for complex a,n € C, Re(a > 0)

(16) (I°77) (@) = (I4,) (@) = /O Swo e, (o> 0)

/oo(t _ 2oL ydt, (x> 0).

N

I(a)
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and
(1.7)
o

(1207 F) (@) = (Ko f) WZ@/UC (t—2)* "o f(B)dt (x> 0).

1.2. Riemann-Liouville fractional derivatives and its generalization

The classical Riemann-Liouville fractional derivative of f of order u is de-
fined by

INE a) Jo (o= t)a+1dt if Re(a) <0,
(18)  Df(x):=

ddwm Dor " f(x) if m—1<Re(a)<m.

In recent years, many authors have developed various extended fractional de-
rivative formulas of Riemann-Liouville type. Here, we consider two generalized
fractional derivative.

First, we consider the extension defined in [2] by
2

ox
1. DHo _
(19 DE(@) G-ty tew (7 ) a
with Re (1) < 0 and Re (0) > 0. For f(z) =x", it follows that

BU(V + 13 7:”’) xyfp,

L(—p)
for Re (v) > —1 and Re(p) < 0. Further, if f is analytic in the disc |z| < p
and have the power series f(x) = EZO,O anx™, then

(1.10) DI (V) =

(1.11) Do (a2 f ()

s A+n, —p)z",

provided Re (A) > —1 and Re (u) < 0. Here the function B, is the extended
beta function, which was introduced by Chaudhry et al. [5] and defined by

1
(112) Ba(a’ b) = A ta—l(l — t)b_l exp (—7“10;0) dt,

when Re(a) > 0, Re(b) > 0, Re(o) > 0. This extended beta functions have
close association with the Macdonald, error and Whittaker functions, and using
this, an extension of the hypergeometric functions can be found in [6].

Recently, Kataugampola [10] introduced a generalized fractional derivatives
operator #Dg, defined by

P .
Loy LB rdt i Re(a) <0,
(1.13) #Dg, f(z) ==

(z=0 7 ) eDg " f (@) i m—1 < Re(a) <m,

where m € N and p > 0.
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For the function f(z) = z”, v € R, the generalized fractional derivative
operator with Re(a) < 0 defined in (1.13) yields the formula

a 11‘\ (p _|_1)
(1.14) PDg 2 = —x”_o‘p.
r (% v1- a)

Replacing p = 1 in (1.14) gives the classical Riemann-Liouville fractional inte-
gral for the function z¥, which is,

v—o

I'v+1)
1.15 DV = ——————
(1.15) =¥ F(VJrlfoz)x

1.3. Finite class of classical orthogonal polynomials
The solution of the differential equation

2z + Dy, (@) + (2 = p)z + (1+ q))yn(2) —n(n — 1+ plyn(x) =0,

is the polynomial

(1.16) MP9 (1) n'Z( " ) ( :{:Z ) (—z)k.

With respect to the weight function w, ,(x) = x4(1+2)~*9 the polynomials
defined in (1.16) are orthogonal on [0, c0) if and only if p > 2n+1 and ¢ > —1.

It is also known that the polynomials M(p 9

functions as

(117) MPD(g) = (—1)%!( ‘1:” >2F1(—n,n+1 —pig+1;—x).

are related with hypergeometric

The Jacobi polynomials Psla’ﬁ ) and M&Lp D can be related by

" x—1
M@ (1) = (—1)*nlple:—P=9) (9 1) & P9 () = ( M(=p—a,p) .
P (@) = (~1)nlp P9 (20 4 1) & PPD(2) = < u >
Details related to this finite class of classical orthogonal polynomials can be
found [18,19,21].

1.4. Outline of this work

The aim of this work is to investigate compositions of integral transforms
(1.1) and (1.2) for Jacobi type finite class of classical orthogonal polynomials
(1.16). In the sequel, the compositions are expressed in terms of the generalized
Wright hypergeometric function ,v,(z) complex a;,b; € C, and real o;, 5; € R
(i=1,2,...,p;5 =1,2,...,q) and defined by the series

aﬂralk)xk
] Z L(b; + Bik) k

(Cl“O(z 1
(1.18) p¥a(T) = ptbg [(bj,ﬂj Z
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Asymptotic behavior of this function for large values of argument of z € C was
studied in [7,33,34] and under the condition

q

p
(1.19) DB =D >,
i=1

Jj=1

in [33,34].

2. Composition with generalized fractional integrations

The following lemmas proved in [16], which are required to prove the result
in this section.

Lemma 2.1 ([16]). Let o, 8,1 € C be such that
Re(a) > 0,Re(o) > max[0, Re(8 — n)].
Then there exists the relation
(I&”@’"tc’_l) () = I'(o)l(o+n—f) Lo—B-1

I'(o—pB)T(c+a+mn)
In particular,
I'(o)

(2.1) (I&rt”’l) )= o o)

g 27T Re(a) > 0,Re(o) > 0,

(22) (IF.t71) (x) = mgfﬂ—l

Lemma 2.2 ([16]). Let o, 5,n € C be such that
Re(a) > 0,Re(0) < 1+ min[Re(5), Re(n)].

,  Re(a) > 0,Re(c) > —Re(n).

Then
PB-o+ DT —0+1) 4,
l-o)(a+B+n—0+1) '

a,B,mp0—1 A
(I* t ) (z) = I(
In particular,

F(l - — J) o+a—1

(2.3) (171 (z) = T o) ;

0 < Re(a) <1 —Re(o)

. W P(n—o+1)
2.4 K 7t =
@) (Kt @) = e
Theorem 2.1. Let a,3,n,0 € C be such that

Re(a) >0, and Re(o) > max[0,Re(8—n)l.

z°71 Re(o) < 1+ Re(n)

Then,

(=) (o) (c+n—-B8)T(1+q+ n)wg_ﬂ_l
1+ q)T(c—B)(oc+a+mn)

(557 0 0) (@) =
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1+n—p,—na070+77—ﬁ7

2.5 F:
( ) el 1+an—ﬂag+n+aa

_4.

Proof. First of all note that 4F3 given in (2.5) exists because this series abso-
lutely convergent and moreover, it is an entire function if z € C. Now using
(1.1) and changing the order of the integration, the summation yields

(157 Mo P (1)) ()
> [ p—(n+1 q+n @B, 0+k—
_ Z(_l)k( (k ) > ( ne k ) (IOJant +k 1) (l‘)
k=0
for any £ =0,1,2,...,n. Since
Re(o + k) > Re(o) > max[0,Re(8 — n)],
applying Lemma 2.1 with o replaced by o + k gives
(1501 P (1)) ()

(—1)"T(1+q+n)x" A1
F(1+n—p(-n)

ZP(l+n—p+k)F(—n+k)l“(a+k)1“(a+77—ﬁ+k)
F(1+q+k)T(c—B+2k)(c+a+n+k)(1+k)

(2.6) (—z)"

k=0

Finally using the well-known identity I'(x + k) = (z)xI'(z), the right hand side
of (2.6) can be rewrite as
_ —1)"T(1+qg+n)(@)(c+n—0) , 4
7Bn0=1 3 r(p.q) - ( o—p-1
(£ 0 1) (o) T+ gl —BT(ctatny °
p i (=n)k(L+n —p)r(o)k(c +n— Bk (=)
1+ k(o = B)i(o + a+n)kk!

k=0

This establish (2.5). O

Substituting f = —a in Theorem 2.1, and using (2.1) gives the following
result.

Corollary 2.1. Let a,0,€ C be such that Re(a) > 0, Re(o) > 0. Then

(1807 M PO D)) (2)

_ (_1)nF(1+Q+n)F(O_)$U+Q_1 1+n_pa —-n,o
B (1 +q)T(c+ ) 302 l1+q,0+a

Substituting 8 = 0 in Theorem 2.1, and using (2.2) implies the following

result.




SOME COMPOSITION FORMULAS 7

Corollary 2.2. Let a,m,0 € C be such that Re(a) > 0, Re(o) > —Re(n).
Then

(Lrat™ M2 (0)) (@)
_ GOt g+n)To+n2! o [1+n—p-no+n|_
- T(+@Tctatn ° l+gq0+a+7 '
Next the generalized right-hand sided fractional integration (1.2) of the Ja-
cobi type finite class of classical orthogonal polynomials related to Jacobi poly-

nomials and the relation with generalized Wright functions are considered to
get the following result.

Theorem 2.2. Let a,n,0 € C be such that
Re(a) >0 and Re(o) <1+ min[Re(S5), Re(n)].

1
(1m0 (1)) o

T(1+qg+n)T(B—0+1)(n—o+1)z" A1
rl+q¢T(1—o)N(a+p+n—0c+1)

I F Il+n—-p,—npB-oc+ln—o+1| 1
P 1+ql-cat+B4n-0+1, x|

Then

Proof. Now using (1.2) and changing the order of the integration, the summa-
tion yields

(1(_*”37%0—11\4,51’#) (1)) () = (-1)"T(n+1) Ii (p - (Z N U) ( Zt’; )
x ((~1)frePme ) (@)
for any £k =0,1,2,....
Since
Re(c —k —1) <1+ Re(oc — 1) < 1+ min[Re(B),Re(n)],
applying Lemma 2.2 with o replaced by o — k, it is easy to see that

(12913199 (1)) o

(-1)"T(1+q+n)z7 A1
F(l+n—pT(—n)
- L(1+n—p+k)T(=n+k)D(B—0+14k)L(n—0+1+Fk) (— )*k )

e T tatMT (-0 1) (atBrn—ot 1+ R T(1TR)
k=0

Again the use of identity I'(x + k) = (z),I'(z) in the above equation will gives
the required result. O
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Corollary 2.3. Let a,n,0 € C be such that
Re(a) >0 and Re(o) <1+ min[Re (—a),Re(n)]
and let c +a #1,2,.... Then

<Ift"1M,(Lp’q) (1)) (x)

 TPA+q+n)l(—a—o+1)z7te? l+n—p-n—a—-c+1| 1
B N1+ ¢)T'(1-o0) 302 1+¢1-0 :

Corollary 2.4. Let a,n,0 € C be such that

T

Re(a) >0 and Re(o) <1+ min[0,Re (n)]
and let 0 —n #1,2,.... Then

— oty (L)) () = GV TA+a+n)T(n -0+ a7
(K’%“t M; )<t>>( )= 1+ gl (a+n—0o+1)

—p, — — 1
><3F2[1+n p,—Nn, 1N 0—1—1’_]

l+qa+n—0c+1 T

3. Composition with the generalized fractional derivatives

In this section, first we consider the composition of the finite class of classical
orthogonal polynomials with the generalized fractional derivatives defined in
(1.13) and the outcomes are represented in the closed form of the generalized
Wright functions defined in (1.18).

Theorem 3.1. Let p > 0 and Re(a) < 0. Then for p>2n+1 and ¢ > —1,
(3.1)

DY, (M%p’q) (x))

B (_l)npa—lr(q+l+n) (—’I’L,l) (n—l—l—p, 1) (1,%) .
~ zreT(=n)L(n+1—p) & (¢g+1,1) (1—04,%)

In particular,

=1 1),
(3:2) D3 (UP9(2)) = MBFQ (~nn+1-plig+11—a;—w).

Proof. From (1.17) it follows that

(D) () = (_1)" o~ (T =Pk
() = (s 1), S R
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Thus, an application of the operator D, on both side of the above equation
along with the relation (1.14) gives

(=R (=n)r(n -
g, (P (@) = (-1 (g + 1)y T (qfi);f P pp (o)
k=0

n)k(n—&-l—p)kF( k)

3.3 = +1),p*" 1 P) h—ap.

(33) -1 kzo (q—l—l)kF(l—a-i- )k!

Next the identity I'(z + k) = (z),I'(z) yields

Ppe, (Mﬁf’"l) (x))

(_l)nr(n +14 q)paflepa e F(*TL + k)I‘(n +1 *p+ k)F (1 + %)
P(-n)(n+1-p) & Dg4+1+k0 (1 —a+ %) k!

_ (=D)"T(n+ 1+ q)p* oo o (=n,1) (n+1-p,1) (17 %) .

T T(nTm+1-p) P\ (g+1D) <17a7%> A

Since DS, = DZ, the relation (3.3) reduces

02 (WD (@) = (-1 (g + D 3 I Lt

k=0
Finally, the result follows by the use of identity I'(z + k) = (2)xI'(x). O
Corollary 3.1. For a =1, equations (3.2) becomes
(3.4)
D (Mﬁf”q)(x)) = (=Dl zrliq)p)(q LY [~(n=1),n+1—pjq+2;—a],

which is verified by [18].

In the next result, we will give an inequality for the composition of the finite
class M9 with the generalized fractional derivatives defined in (1.9).

Theorem 3.2. Let p,v,0,x € R such that v,o,x >0 and u < 0. Then
(3.5)

—4o v—u—1
’D:;;,o (xuflMgbpyq)(x))’ < € F(Z/)I "

3F2(_n71+n_pay;q_|_1vy_u’;'r)'

- Tlv—p)
Proof. From (1.11) and (1.17), it follows that
(36)  Du7 (o MPO())

_ UM+ Dot S L+ n—ph

) e AR

n=0
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It is proved in [5] that |B, (z,y)| < e=4°B(x,y) for ,y,0 > 0 and B(z,y) is the
classical beta functions. Using this to (3.6), it follows that

61 |pe (- mpo )]

(—n)k(1+n—p
(q+ 1)k!

e 17 (q + 1) it i
- [(—p)

Now p > 2n + 1 implies 1 + n — p < —n and thus, (—n)x(1 + n — p)i is
non-negative for all k. Thus, we can rewrite (3.7) as

‘Dﬁ"’ (IV*lMgfm (x)) ’

B(v + k, —p)z*.

n=0

e—4a(q_|_ 1)nxu+u—1 i (—n)k(l +n —p)k
- I'(—p) (¢ +1)ik!
which is equivalent to (3.5) after using the identity
P+ MNw) T
To—pth) T m—
This prove the inequality. O

B(V + kv _M)‘rk7

n=0

B(V + kv _/j/) =

Remark 3.1. For 0 = 0 and v = 1, we have from Theorem 3.2 that

o—H
‘D;ch (Mgnp’q)(x)ﬂ < m?ﬂ%(*na L+n—pliqg+1,1—p5x).
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