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Abstract. Let p ≥ 1 be a real number. A tuple T = (T1, . . . , Tn) of
commuting bounded linear operators on a Banach space X is called an

`p-spherical isometry if
∑n

i=1 ‖Tix‖p = ‖x‖p for all x ∈ X. The tuple T

is called a toral isometry if each Ti is an isometry. By a result of Ansari,
Hedayatian, Khani-Robati and Moradi, for every n ≥ 1, there is a su-

percyclic `2-spherical isometric n-tuple on Cn but there is no supercyclic

`2-spherical isometry on an infinite-dimensional Hilbert space. In this
article, we investigate the supercyclicity of `p-spherical isometries and

toral isometries on Banach spaces. Also, we introduce the notion of semi-

commutative tuples and we show that the Banach spaces `p (1 ≤ p <∞)
support supercyclic `p-spherical isometric semi-commutative tuples. As a

result, all separable infinite-dimensional complex Hilbert spaces support
supercyclic spherical isometric semi-commutative tuples.

1. Introduction

An n-tuple of operators is a finite sequence of length n of commuting bounded
linear operators T1, T2, . . . , Tn acting on a Banach space X. For an n-tuple
T = (T1, T2, . . . , Tn), let FT be the multiplicative semigroup generated by Ti’s,

i.e., FT = {T k1
1 · · ·T kn

n : ki ≥ 0, i = 1, 2, . . . , n}. If there exists an element
x ∈ X such that the set orb(T, x) = {Sx : S ∈ FT } is dense in X then T is
said to be a hypercyclic tuple and x is called a hypercyclic vector for T . The
n-tuple T = (T1, T2, . . . , Tn) is said to be supercyclic if there exists an element
x ∈ X such that C.orb(T, x) = {λSx : λ ∈ C, S ∈ FT } is dense in X. In
that case, the vector x is called a supercyclic vector for T . These definitions
generalize the notions of hypercyclicity and supercyclicity of a single operator
to a tuple of operators. The hypercyclicity of tuples of operators was first in-
vestigated by Feldman [4]. Also, The supercyclicity of tuples of operators was
first investigated by Soltani, Hedayatian and Khani-Robati [9].

Recall that a tuple (T1, . . . , Tn) on a Hilbert space H is called a spherical
isometry if

∑n
i=1 T

∗
i Ti = I.
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Theorem 1.1 (Theorem 2 of [2]). For every n ≥ 1, there is a supercyclic
spherical isometric n-tuple on Cn.

Theorem 1.2 (Proposition 1 of [2]). There is no supercyclic spherical isometry
on an infinite-dimensional Hilbert space.

In Section 2, we investigate `p-spherical isometries on Banach spaces and
ask if there is an infinite-dimensional Banach space that supports a supercyclic
`p-spherical isometry. We show that if (T1, . . . , Tn) is a supercyclic `p-spherical
isometry on `q (1 ≤ q <∞) then none of Ti’s can be a weighted backward shift.
Also, we define semi-commutative tuples and we show that every separable
infinite-dimensional Hilbert space supports a supercyclic spherical isometric
semi-commutative tuple. We prove that there is no supercyclic toral isometry
on any Banach space with dimension more than one.

2. `p-Spherical and toral isometries on Banach spaces

Recall from [6] that for a real number p ≥ 1, a tuple (T1, T2, . . . , Tn) on
a Banach space X is called `p-spherical isometry if

∑n
i=1 ‖Tix‖p = ‖x‖p for

every x ∈ X. For complex Hilbert spaces, `2-spherical isometries are spherical
isometries. Indeed, a tuple (T1, . . . , Tn) on a complex Hilbert space H, is a
spherical isometry if and only if

∑n
i=1 ‖Tix‖2 = ‖x‖2 for every x ∈ H.

Question 2.1. Is there any infinite-dimensional Banach space which supports
a supercyclic `p-spherical isometry?

If we think about the negative answer to the question, we may naturally
try to show that a spherical isometric tuple may not include a supercyclic
operator (a tuple which includes a supercyclic operator is clearly supercyclic).
The following proposition shows that the famous supercyclic operator BW may
not be a member of an `p-spherical isometry on X = C0 or `q (1 ≤ q <∞). If
(en)∞n=0 is the canonical basis of X and W = (wn)∞n=1 is a bounded sequence of
positive numbers, recall that the weighted backward shift BW on X is defined
by BW e0 = 0 and BW en = wnen−1 (n ≥ 1). It is known that BW is always
supercyclic [5].

Proposition 2.2. Let X = C0 or `q (1 ≤ q < ∞) and BW be a weighted
backward shift on X. Then there are no operators T1, . . . , Tn ∈ L(X) such that
(BW , T1, . . . , Tn) is an `p-spherical isometry.

Proof. To get a contradiction, suppose that (BW , T1, . . . , Tn) is an `p-spherical
isometry. Let W = (wn)∞n=1 be the weight sequence for BW and (en)∞n=0

be the canonical basis of X. If x =
∑N−1

j=0 ajej ∈ C00, then BN
Wx = 0 and

so for i = 1, . . . , n we have BN
WTix = TiB

N
Wx = 0 which shows that Tix =∑N−1

j=0 bijej . In particular, Tie0 = cie0 and Tie1 = aie0 + bie1 (1 ≤ i ≤ n).

Then
∑n

i=1 |ci|p =
∑n

i=1 ‖Tie0‖p =
∑n

i=1 ‖Tie0‖p + ‖BW e0‖p = ‖e0‖p = 1. On
the other hand, for every i = 1, . . . , n we have biw1e0 = BWTie1 = TiBW e1 =
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Ti(w1e0) = w1cie0 and so bi = ci. Now, the `p-spherical isometry condition for
x = e1 gives

∑n
i=1 ‖aie0 + cie1‖p = 1−wp

1 . But, regarding the norm on X, we
have ‖aie0 + cie1‖ ≥ |ci| for all i = 1, . . . , n. This gives 1−wp

1 ≥ 1 which is not
true. �

Definition 2.3. We say that (T1, . . . , Tn) is a semi-commutative tuple on a Ba-
nach space X if for all 1 ≤ i, j ≤ n, Ker(TiTj−TjTi) is either X or a hyperplane
in X. The semi-commutative tuple (T1, . . . , Tn) is said to be supercyclic if there

is a vector x ∈ X such that the set {λT k1
1 · · ·T kn

n x : λ ∈ C, ki ≥ 0, i = 1, . . . , n}
is dense in X.

Proposition 2.4. The Banach spaces `p (1 ≤ p < ∞) support supercyclic
`p-spherical isometric semi-commutative tuples.

Proof. Fix a real number p ∈ [1,∞) and choose n ∈ N. For 1 ≤ i ≤ n, we de-

fine Ti on `p by Ti
(
a0, a1, a2, a3, . . .

)
=
(
ria0, (

3
4n )

1
p a1, (

3
4n )

1
p a2, (

3
4n )

1
p a3, . . .

)
where

∑n
i=1 |ri|p = 1. Also, define

S
(
a0, a1, a2, a3, . . .

)
=
(
(
1

4
)

1
p a1, (

1

4
)

1
p a2, (

1

4
)

1
p a3, . . .

)
.

Then it is easy to see that for all 1 ≤ i, j ≤ n, TiTj = TjTi and Ker(STi−TiS)
is either `p or M , where M is the hyperplane in `p consisting of all vec-
tors x for which a1 = 0. Thus, (S, T1, . . . , Tn) is a semi-commutative tuple
on `p. On the other hand, if we put x = (a0, a1, a2, a3, . . .), then we have
‖Sx‖p +

∑n
i=1 ‖Tix‖p = ‖x‖p. This shows that the semi-commutative tuple

(S, T1, . . . , Tn) is an `p-spherical isometry. Finally, the supercyclicity of this
semi-commutative tuple follows from the supercyclicity of the weighted back-
ward shift S. �

We saw in Theorem 1.2 that no infinite-dimensional Hilbert space can sup-
port a supercyclic spherical isometric tuple. We use Proposition 2.4 to get the
following result.

Proposition 2.5. Every separable infinite-dimensional complex Hilbert space
supports a supercyclic spherical isometric semi-commutative tuple.

Proof. By Proposition 2.4, there is a semi-commutative tuple (T1, . . . , Tn) on
`2 which is supercyclic spherical isometry. If H is any separable infinite-
dimensional complex Hilbert space and U : H → `2 is an isometric isomor-
phism, then it can be easily verified that (U−1T1U, . . . , U

−1TnU) is a super-
cyclic spherical isometric semi-commutative tuple on H. �

From [8], we recall that a bounded complex sequence ξ ∈ `∞(N,C) almost

converges to a complex number c if lim
k→∞

sup
n∈N
|c − k−1

n+k−1∑
j=n

ξ(j)| = 0. We

say that the sequence ξ almost converges to c in the strong sense if |ξ − c1|
almost converges to zero, where 1 stands for the constant 1 sequence. A gauge
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function is a mapping p : N → (0,∞) with the property that {p(n+1)
p(n) }n∈N

almost converges in the strong sense to a positive number c. The set of all
gauge functions is denoted by P. Now suppose that X is a complex Banach
space and let L(X) denote the set of bounded, linear operators acting on X.
We say that the norm-sequence of an operator T ∈ L(X) is compatible with the
gauge function p ∈ P, if ‖Tn‖ ≤ p(n) holds for every n ∈ N and the sequence

{‖T
n‖

p(n) }n∈N does not almost converge to zero. The set of all such operators is

denoted by L(p,X). It is shown in [7] that {p(n+1)
p(n) }n∈N almost converges to

the spectral radius r(T ) for every T ∈ L(p,X). The operator T ∈ L(p,X)

belongs to the class C1.(p,X) if {‖T
nx‖

p(n) }n∈N does not almost converge to zero

for all non-zero vectors x ∈ X. We remind the reader that a (closed) subspace
M is hyperinvariant for T , if CM⊂M holds for every operator C commuting
with T .

Theorem 2.6 (Main Theorem of [8]). Let T ∈ L(X) be an operator belonging
to the class C1.(p,X),p ∈ P. Let us assume that there exists a sequence {xn}n∈Z
in X such that the vectors {xn}n∈N span an infinite dimensional subspace,
Txn = xn+1 for every n ∈ Z, and∑

n∈Z

log∗(r(T )−n‖xn‖)
1 + n2

<∞.

Then there exists a sequence {Xn}n∈N of non-zero hyperinvariant subspaces of
T such that

Xn ∩ (
∨
j 6=n

Xj) = {0}

for every n ∈ N. Furthermore, if σp(T ) ∩ r(T )T = ∅, then⋂
n∈N

(
∨
j≥n

Xj) = {0}.

The authors in [1] proved that isometries on Banach spaces with dimension
more than one are not supercyclic. In the following theorem, we generalize this
result to toral isometries. Here σp(T ) stands for the point spectrum of T and T
denotes the unit circle {z ∈ C : |z| = 1} in the complex plane C. Furthermore,
log∗ t := 0 if 0 ≤ t ≤ 1 and log∗ t := log t if t ≥ 1.

Theorem 2.7. Suppose that X is an infinite-dimensional Banach space. Then
there does not exist a supercyclic toral isometry on X.

Proof. We prove the theorem for 2-tuples; for other n-tuples (n ≥ 3) the proof
is similar. We argue by contradiction. Assume that x0 is a supercyclic vector
for the pair T = (T1, T2). Let x be a nonzero vector in X. Therefore, there
are two sequences of non-negative integers {ki}i and {si}i and a sequence of
scalars {αi}i such that

(1) αiT
ki
1 T si

2 x0 −→ x
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which implies that for large i we have

‖x‖ − |αi|‖x0‖ ≤ ‖αiT
ki
1 T si

2 x0 − x‖ <
‖x‖
2
.

Thus

(2) |αi| >
‖x‖

2‖x0‖
∀i ≥ i0

for some i0. On the other hand, if z is an arbitrary element in X, then there
are two sequences of non-negative integers {mj}j and {nj}j and a sequence of
scalars {βj}j such that

βjT
nj

1 T
mj

2 x0 −→ z.

Let ε be a positive number. Since T1 and T2 are isometries there is a positive
integer j0 such that

(3) |βj | <
‖z‖+ 1

‖x0‖
and

(4) ‖βjT
nj

1 T
mj

2 x0 − z‖ <
ε

2

for all j ≥ j0. Now if i and j are sufficiently large, then (1), (2) and (3) imply
that

(5)
|βj |
|αi|
‖x− αiT

ki
1 T si

2 x0‖ <
ε

2
.

Hence there are positive integers i and j such that nj > ki and mj > si so that∥∥∥∥βjαi
T

nj−ki

1 T
mj−si
2 x− z

∥∥∥∥ ≤ ∣∣∣∣βjαi

∣∣∣∣ ∥∥∥Tnj−ki

1 T
mj−si
2 x− αiT

nj−ki+ki

1 T
mj−si+si
2 x0

∥∥∥
+
∥∥βjTnj

1 T
mj

2 x0 − z
∥∥

=

∣∣∣∣βjαi

∣∣∣∣ ∥∥∥x− αiT
ki
1 T si

2 x0

∥∥∥+
∥∥βjTnj

1 T
mj

2 x0 − z
∥∥ < ε.

This implies that every nonzero vector x is a supercyclic vector for the pair
(T1, T2). Thus, T1 and T2 do not admit common non-trivial (closed) invariant
subspaces. Indeed, if N is such a subspace and x is a nonzero vector in N ,
then {λT k

1 T
m
2 x : λ ∈ C, k,m ≥ 0} ⊂ N and so N = N = X. This shows in

particular that both T1 and T2 are surjective and hence invertible.
If p(n) = 1 for all n ∈ N, then it is easily seen that the operators T1 and

T2 are in the class C1.(p,X) . Put xn = Tn
1 x0 and yn = Tn

2 x0 for n ∈ Z
and assume that

∨
n∈N

xn and
∨

n∈N
yn are finite-dimensional; therefore, dimX =

dimC.orb(T, x0) ≤ (dim
∨

n∈N
xn)(dim

∨
n∈N

yn) <∞ which is absurd. So without

loss of generality we can assume that {xn}n∈N spans an infinite-dimensional
subspace. Since r(T1) = 1, all conditions of Theorem 2.6 hold for the operator
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T1. It follows that T1 and T2 have a common nontrivial invariant subspace
which is a contradiction. �

Remark 2.8. The assertion of Theorem 2.7 is also true for all Banach spaces
X with 1 < dimX < ∞. Since two commuting complex matrices have a
common eigenvector, we conclude that there is a non-trivial subspace N of X
that is invariant under the operators T1 and T2. On the other hand, according
to the proof of the above theorem, every nonzero vector x is a supercyclic
vector for the pair (T1, T2). Hence for every nonzero element x ∈ N the set
C.orb((T1, T2), x) ⊂ N is dense in X, which is a contradiction.

Denote by Iso(X) the set of all isometries on X.

Proposition 2.9. Suppose that p ∈ [1,∞) and
∑n

i=1 ‖Tix‖p = ‖x‖p for every
x ∈ X. If (n− 1) operators among T1, . . . , Tn belong to C.Iso(X), then the last
one also belongs to C.Iso(X).

Proof. Without loss of generality, suppose that for i = 1, . . . , n− 1, Ti = aiAi

where Ai ∈ Iso(X) and ai ∈ C. If we put a =
∑n−1

i=1 |ai|p, then we have
a‖x‖p + ‖Tnx‖p = ‖x‖p or ‖Tnx‖p = (1 − a)‖x‖p for all x ∈ X. If a = 1,

then Tn = 0 = 0.I and we are done. Otherwise, if we put S = (1 − a)
−1
p Tn,

then S is clearly an isometry. Consequently, Tn = (1 − a)
1
pS and the proof is

complete. �

It is clear that the tuple (T1, . . . , Tn) is supercyclic if and only if (a1T1,
. . . , anTn) is supercyclic where a1, . . . , an are arbitrary non-zero scalars. Re-
garding this fact, together with Theorem 2.7 and Proposition 2.9, we have the
following result.

Corollary 2.10. Let X be a Banach space with dimX > 1. If (T1, . . . , Tn)
is a supercyclic `p-spherical isometry, then at most (n − 2) operators among
T1, . . . , Tn may belong to C.Iso(X).
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