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ON WEAKLY LEFT QUASI-COMMUTATIVE RINGS

Dong Hwa Kim, Zhelin Piao, and Sang Jo Yun

Abstract. We in this note consider a generalized ring theoretic property

of quasi-commutative rings in relation with powers. We will use the ter-

minology of weakly left quasi-commutative for the class of rings satisfying
such property. The properties and examples are basically investigated in

the procedure of studying idempotents and nilpotent elements.

1. Introduction

Throughout this note every ring is an associative ring with identity unless
otherwise stated. Let R be a ring. We use C(R) to denote the center of R, i.e.,
the set of all central elements in R. The n by n full (resp., upper triangular)
matrix ring over R is written by Matn(R) (resp., Un(R)). Dn(R) denotes the
subring {(aij) ∈ Un(R) | a11 = · · · = ann} of Un(R). Use Eij for the matrix
with (i, j)-entry 1 and zeros elsewhere. Let J(R), N0(R), N∗(R), N∗(R), and
N(R) denote the Jacobson radical, the Wedderburn radical, the prime radical,
the upper nilradical (i.e., sum of all nil ideals), and the set of all nilpotent
elements in a given ring R (possibly without identity), respectively. It is well-
known that N∗(R) ⊆ J(R) and N0(R) ⊆ N∗(R) ⊆ N∗(R) ⊆ N(R). The
polynomial ring with an indeterminate x over R is denoted by R[x], and for
any polynomial f(x) in R[x] Cf(x) denotes the set of all coefficients of f(x). Zn

denotes the ring of integers modulo n. |S| denotes the cardinality of a given
set S.

A ring (possibly without identity) is usually called reduced if it has no
nonzero nilpotent elements. A ring is usually called Abelian if every idem-
potent is central.

Following Jung et al. [8], a ring R is said to be quasi-commutative if ab ∈
C(R) for all a ∈ Cf(x) and b ∈ Cg(x) whenever two polynomials f(x) and g(x)
over R satisfy f(x)g(x) ∈ C(R)[x]. In this note we consider a generalization of
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quasi-commutative rings. In the procedure, the following kind of matrix ring
does a basic role. Next consider a generalization of quasi-commutative rings.

Definition 1.1. A ring R (possibly without identity) shall be said to be weakly
left quasi-commutative provided that there exists positive integers m = m(a),
depending on a, such that amb ∈ C(R) for each pair (a, b) ∈ Cf(x) × Cg(x)

whenever two polynomials f(x), g(x) ∈ R[x] satisfy f(x)g(x) ∈ C(R)[x]. The
weakly right quasi-commutative ring is defined similarly. A ring is called weakly
quasi-commutative if it is both weakly left and weakly right quasi-commutative.

Every quasi-commutative ring is clearly weakly quasi-commutative. C(R[x])
= C(R)[x] is easily shown, so we will use this fact freely.

Lemma 1.2. Let R be a weakly left quasi-commutative ring. Then we have
the following.

(1) Let a ∈ R. If an ∈ C(R) for some n ≥ 1, then a ∈ C(R).
(2) N(R) ⊆ C(R).
(3) N(R) = N∗(R) = N∗(R) = N0(R).
(4) Every weakly left or right quasi-commutative ring is Abelian.

Proof. (1) The proof is almost same as one of [8, Lemma 1.5(1)]. But we write
it here for the completeness. Let a ∈ R and suppose that an ∈ C(R) for some
n ≥ 1. Then (1− ax)(1 + ax+ a2x2 + · · ·+ an−1xn−1) = 1− anxn ∈ C(R)[x].
Since R is weakly left quasi-commutative, we have a = 1a = 1ka ∈ C(R) for
some k ≥ 1.

The proofs of (2) and (3) are equal to those of [8, Lemma 1.5(2, 3)].

(4) We apply the proof of [8, Proposition 1.8(1)]. Let R be a weakly left
quasi-commutative ring. Assume on the contrary that there exist e2 = e, r ∈ R
such that er(1 − e) 6= 0. Let a = er(1 − e). Consider f(x) = e + ax and
g(x) = (1 − e) − ax in R[x]. Then f(x)g(x) = 0 ∈ C(R)[x]. Since R is
weakly left quasi-commutative, a = ea = eka ∈ C(R) for some k ≥ 1, and so
0 6= a = ea = ae = 0. This induces a contradiction. The proof of right case is
similar, by the equality a = a(1− e) = a(1− e)l ∈ C(R) for some l ≥ 1. �

By Lemma 1.2, we obtain [8, Lemma 1.5(1, 2, 3)] as corollaries.

Note. (1) Let R be a nil ring (possibly noncommutative) and a, b ∈ R. Then
an = 0 and anb = 0 for some n ≥ 1, so R is weakly left quasi-commutative.
Similarly R is weakly right quasi-commutative. When R is a noncommutative
ring, Lemma 1.2(3) is not valid here. Note that the proof of the results in
Lemma 1.2 is done for the case of R having the identity.

(2) Let A be any ring and R0 = Dn(A) for n ≥ 5. Next set R = {(aij) ∈
R0 | a11 = · · · = ann = 0} be the nil subring of R0. Then R is weakly quasi-
commutative by (1). However R is not quasi-commutative as follows. Let

f(x) = E23 + E24x and g(x) = E45 − E35x
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in R[x]. Then f(x)g(x) = 0 ∈ C(R)[x]. But E23E35 = E25 /∈ C(R) because
E25E12 = 0 6= E15 = E12E25.

The following is an extension of weakly left quasi-commutative rings.

Proposition 1.3. (1) Let R be a weakly left quasi-commutative ring. Then

J(R[x])= N0(R[x])= N∗(R[x])= N∗(R[x])= N0(R)[x]= N(R)[x]= N(R[x]).

(2) Let R be a weakly left quasi-commutative ring. Then R[x]/J(R[x]) is a
reduced ring.

(3) Let R be a weakly left quasi-commutative ring. Then N(R[x]) is a com-
mutative ring without identity.

Proof. (1) The proof is much the same as [8, Proposition 1.6], by help of Lemma
1.2(3).

(2) is an immediate consequence of (1).
(3) is obtained by (1) and Lemma 1.2(2). �

By Proposition 1.3, we can obtain [8, Proposition 1.6] as a corollary.
Following [7], a ring is called locally finite if every finite subset generates

a finite multiplicative semigroup. It is obvious that the class of locally finite
rings contains finite rings and algebraic closures of finite fields. It is shown by
[6, Theorem 2.2(1)] that a ring is locally finite if every finite subset generates
a finite subring. In what follows, we extend [8, Corollary 1.10] to weakly left
quasi-commutative rings.

Proposition 1.4. Let R be a locally finite ring. Then the following conditions
are equivalent:

(1) R is weakly left quasi-commutative;
(2) R is weakly right quasi-commutative;
(3) R is quasi-commutative;
(4) R is commutative.

Proof. (4) ⇒ (3), (3) ⇒ (2), and (3) ⇒ (1) are obvious.
(1) ⇒ (4) is shown by applying the proof of [8, Corollary 1.10]. Let R be

quasi-commutative and a ∈ R. Since R is locally finite, ak is an idempotent for
some k ≥ 1 by the proof of [7, Propostion 16]. But ak is central for some k ≥ 1
by Lemma 1.2. Consider f(x) = 1− ax and g(x) = 1 + ax+ · · ·+ ak−1xk−1 in
R[x]. Then f(x)g(x) = 1− akxk ∈ C(R)[x]. So a ∈ C(R) because R is weakly
left quasi-commutative. Thus R is commutative.

The proof of (2) ⇒ (4) is similar to the preceding one. �

Thus finite noncommutative rings cannot be weakly left quasi-commutative
by Proposition 1.4.

Considering various situations above, one may conjecture that a ring R
may be weakly left quasi-commutative when both R/I and I are weakly left
quasi-commutative, where I is a proper ideal of R and is weakly left quasi-
commutative as a ring without identity. However the following erases the pos-
sibility.
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Example 1.5. Let K be a commutative ring, and R = Dn(K) for n ≥ 3. Then
R is not weakly left quasi-commutative by the argument after Proposition 2.1
to follow, or by Lemma 1.2(2) because N(R) is not contained in C(R). Consider
the ideal I = {(aij) ∈ R | a11 = · · · = ann = 0} of R. Then I is a nil ring, and
so it is weakly quasi-commutative by Note after Lemma 1.2. Moreover R/I is
isomorphic to K, so it is quasi-commutative.

2. Examples and counterexamples

In this section we are concerned with examples and counterexamples which
are helpful to elaborate the structure of weakly left quasi-commutative rings.

Proposition 2.1. For a ring R, the following conditions are all equivalent:
(1) R is a commutative ring;
(2) D2(R) is a commutative ring;
(3) D2(R) is a quasi-commutative ring;
(4) D2(R) is a weakly left quasi-commutative ring;
(5) D2(R) is a weakly right quasi-commutative ring.

Proof. (1) ⇒ (2), (2) ⇒ (3), (3) ⇒ (4), and (3) ⇒ (5) are obvious.
(4) ⇒ (1): The proof is done by 1.2(2) and the proof of [8, Proposition 1.7].

But we write here another proof. Let D2(R) be a weakly left quasi-commutative
ring, and assume on the contrary that R is not commutative. Say that ab 6= ba
for some a, b ∈ R. Consider f(x) = 1 + ( 0 a

0 0 )x and g(x) = 1 + ( 0 a
0 0 )x in

D2(R)[x]. Then f(x)g(x) = 1 ∈ C(R)[x]. But 1k ( 0 a
0 0 ) = ( 0 a

0 0 ) /∈ C(D2(R))
for all k ≥ 1 because(

0 a
0 0

)(
b 0
0 b

)
=

(
0 ab
0 0

)
6=
(

0 ba
0 0

)
=

(
b 0
0 b

)(
0 a
0 0

)
.

The proof of (5) ⇒ (1) is similar to the preceding one. �

Over any ring A, Dn(A) cannot be weakly left quasi-commutative when n ≥
3 because Dn(A) contains non-central nilpotent matrices Eij for i = 1, 2, . . .
and j = i+ 1. Note EijEj(j+1) = Ei(j+1) 6= 0 = Ej(j+1)Eij .

Due to Bell [2], a ring R is said to be IFP if ab = 0 implies aRb = 0 for
a, b ∈ R. Reduced rings are easily shown to be IFP. It is also easily checked that
IFP rings are Abelian. So, considering Lemma 1.2(4), one may ask whether
IFP rings are weakly left quasi-commutative. However the following argument
answers negatively. Let R be the Hamilton quaternions H over the real number
field R. Then R is clearly IFP. But it is not weakly left quasi-commutative.
For, (1− ix)(1 + ix) = 1 + x2 ∈ C(H)[x] and 1ki = 1i = i /∈ C(H) = R for all
k ≥ 1.

In what follows, we see an Abelian ring which is not weakly left quasi-
commutative, showing that the converse of Lemma 1.2(4) need not hold.

Example 2.2. We use the ring in [7, Example 2]. Let

A = Z2〈a0, a1, a2, b0, b1, b2, c〉
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be the free algebra with noncommuting indeterminates a0, a1, a2, b0, b1, b2, c
over Z2, and B be the set of polynomials of zero constant term in A.

Let I be the ideal of A generated by a0rb0, a0b1 + a1b0, a0b2 + a1b1 +
a2b0, a1b2 +a2b1, a2rb2, (a0 +a1 +a2)r(b0 + b1 + b2), and r1r2r3r4, where r ∈ A
and r1, r2, r3, r4 ∈ B. Set R = A/I here. Then R is an IFP ring by [7, Example
2]. We identify a0, a1, a2, b0, b1, b2, c with their images in R for simplicity. Note
B4 = 0.

However R is not weakly left quasi-commutative by Lemma 1.2(4) because
there exists a nilpotent element a0 which is not central (note a0b0 6= b0a0). In
fact, letting f(x) = 1 + a20x ∈ R[x], we have

f(x)2 = (1 + a20x)(1 + a20x) = 1 + 2a20x+ a40x
2 = 1 ∈ C(R)[x],

but 1ka20 = a20 /∈ C(R) for all k ≥ 1 (note a20b0 6= b0a
2
0).

By help of Example 2.2, one can say that IFP rings need not be quasi-
commutative.

Let R be a ring. Recall that an element u in R is right regular if ur = 0
implies r = 0 for r ∈ R. The left regular can be defined similarly. An element
is regular if it is both left and right regular (i.e., not a zero divisor).

Proposition 2.3. Let R be a ring and M be a multiplicatively closed sub-
set of R consisting of central regular elements. Then R is weakly left quasi-
commutative if and only if so is M−1R.

Proof. We apply the proof of [8, Proposition 2.3]. Write E = M−1R and note
that C(E) = M−1C(R) by the argument in the proof of [8, Proposition 2.3].

Suppose that R is weakly left quasi-commutative. Let F (x) =
∑m

i=0 αix
i

and G(x) =
∑n

j=0 βjx
j be in E[x] such that F (x)G(x) ∈ C(E)[x], where

αi = u−1ai, βj = v−1bj with ai, bj ∈ R for all i, j and regular u, v ∈ R.
But F (x)G(x) = u−1(a0 + a1x + · · · + amx

m)v−1(b0 + b1x + · · · + bnx
n) =

(uv)−1(a0 + a1x+ · · ·+ amx
m)(b0 + b1x+ · · ·+ bnx

n).

Here let f(x) = a0 + a1x + · · · + amx
m and g(x) = b0 + b1x + · · · + bnx

n.
Then f(x) and g(x) are in R[x]. Moreover f(x)g(x) ∈ C(R)[x] since

F (x)G(x) ∈ C(E)[x] and C(E) = M−1C(R).

Since R is weakly left quasi-commutative, there exists ki = ki(ai), depending

on ai, such that aki
i bj ∈ C(R) for every tuple (i, j). This entails

αki
i βj = u−kiaki

i v
−1bj = (u−kiv−1)aki

i bj ∈M
−1C(R) = C(E).

Thus E is weakly left quasi-commutative.
Suppose that E is weakly left quasi-commutative. Let f(x)g(x) ∈ C(R)[x]

for f(x), g(x) ∈ R[x]. Then f(x)g(x) ∈ (M−1C(R))[x] = C(E)[x]. Since E
is weakly left quasi-commutative, akb ∈ C(E) for some k ≥ 1 for every tuple
(a, b) ∈ Cf(x) × Cg(x). Thus akb ∈ C(R) since C(R) = R ∩ C(E), and so R is
weakly left quasi-commutative. �
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Let R be a ring. Recall that the ring of Laurent polynomials, in an indeter-
minate x over R, consists of all formal sums

∑n
i=k aix

i with obvious addition
and multiplication, where ai ∈ R and k, n are (possibly negative) integers with
k ≤ n. We denote this ring by R[x;x−1].

Corollary 2.4. Let R be a ring. R[x] is weakly left quasi-commutative if and
only if so is R[x;x−1].

Proof. The proof is an immediate consequence of Proposition 2.3, noting that
R[x;x−1] = M−1R[x] if M = {1, x, x2, . . .}. �

We provide a weakly quasi-commutative ring which is not quasi-commutative
in Note after Lemma 1.2. But this is the case of without identity. So we end
this note by asking whether there exist weakly left quasi-commutative rings
but not quasi-commutative when given rings have the identity.

Acknowledgment. The authors thank the referee for very careful reading of
the manuscript and valuable suggestions that improved the paper by much.
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