An $L_p$ analytic Fourier-Feynman transform on abstract Wiener space
Commun. Korean Math. Soc. 1997 Vol. 12, No. 3, 579-595
Kun Soo Chang, Young Sik Kim, Il Yoo
Yonsei University, Seoul National University, Yonsei University
Abstract : In this paper, we establish an $L_p $ analytic Fourier-Feyn- man transform theory for a class of cylinder functions on an abstract Wiener space. Also we define a convolution product for functions on an abstract Wiener space and then prove that the $L_p $ analytic Fourier-Feynman transform of the convolution product is a product of $L_p $ analytic Fourier-Feynman transforms.
Keywords : Abstract Wiener Space, Analytic Feynman Integral, $ L_p $ Analytic Fourier-Feynman Transform, Convolution Product
MSC numbers : 28C20
Downloads: Full-text PDF  

Copyright © Korean Mathematical Society.
(Rm.1109) The first building, 22, Teheran-ro 7-gil, Gangnam-gu, Seoul 06130, Korea
Tel: 82-2-565-0361  | Fax: 82-2-565-0364  | E-mail:   | Powered by INFOrang Co., Ltd