Commun. Korean Math. Soc. 2024; 39(3): 717-729
Online first article July 19, 2024 Printed July 31, 2024
https://doi.org/10.4134/CKMS.c230321
Copyright © The Korean Mathematical Society.
Hassane Benbouziane, Kaddour Chadli , Mustapha Ech-chérif El Kettani
University Sidi Mohammed Ben Abdellah; University Sidi Mohammed Ben Abdellah; University Sidi Mohammed Ben Abdellah
Let ${\mathcal B}(H)$ be the algebra of all bounded linear operators on a Hilbert space $H$ with $\operatorname{dim} (H)>2$. Let ${\mathcal{G} \mathcal{P}}$ be the subset of ${\mathcal B}(H)$ of all generalized projection operators. In this paper, we give a complete characterization of surjective maps $\Phi: {\mathcal B}(H) \rightarrow {\mathcal B}(H)$ satisfying $A-\lambda B \in {\mathcal{G} \mathcal{P}} \Leftrightarrow \Phi(A)-\lambda \Phi(B) \in {\mathcal{G} \mathcal{P}}$ for any $A, B \in {\mathcal B}(H)$ and $\lambda \in \mathbb{C}$.
Keywords: Hilbert space, generalized projection, preserver
MSC numbers: 47B49, 47B48
2023; 38(3): 821-835
2016; 31(4): 765-777
2013; 28(1): 135-141
1997; 12(2): 311-324
© 2022. The Korean Mathematical Society. Powered by INFOrang Co., Ltd