On the $g$-circulant matrices
Commun. Korean Math. Soc. 2018 Vol. 33, No. 3, 695-704
Published online 2018 Jul 31
Mustafa Bah\c{s}i, S\"{u}leyman Solak
Education Faculty, A. K. Education Faculty
Abstract : In this paper, firstly we compute the spectral norm of $g$-circulant matrices $C_{n,g}=g\text{-Circ}(c_0,c_1,\ldots ,c_{n-1})$, where $c_i \geq 0$ or $c_i \leq 0$ (equivalently $c_i\cdot c_j\geq 0)$. After, we compute the spectral norms, determinants and inverses of the $g$-circulant matrices with the Fibonacci and Lucas numbers.
Keywords : circulant matrix, $g$-circulant matrix, Fibonacci number, Lucas number, spectral norm, determinant, inverse
MSC numbers : 15B05, 15A60, 11B37, 11B39
Full-Text :


Copyright © Korean Mathematical Society. All Rights Reserved.
The Korea Science Technology Center (Rm. 411), 22, Teheran-ro 7-gil, Gangnam-gu, Seoul 06130, Korea
Tel: 82-2-565-0361  | Fax: 82-2-565-0364  | E-mail: paper@kms.or.kr   | Powered by INFOrang.co., Ltd