Biharmonic-Kirchhoff type equation involving critical Sobolev exponent with singular term
Commun. Korean Math. Soc. 2021 Vol. 36, No. 2, 247-256
Published online January 21, 2021
Printed April 30, 2021
Kamel Tahri, Fares Yazid
Laboratory of Dynamic System and Applications; Amar Teledji University
Abstract : Using variational methods, we show the existence of a unique weak solution of the following singular biharmonic problems of Kirchhoff type involving critical Sobolev exponent: \begin{equation*} (\mathcal{P}_{\lambda })\left\{ \begin{array}{ll} \!\!\!\!\Delta ^{2}u\!-\!(a\int_{\Omega }|\nabla u|^{2}dx\!+\!b)\Delta u\!+\!cu\!=\!f\left( x\right) \left\vert u\right\vert ^{-\gamma }\!-\!\lambda \left\vert u\right\vert ^{p-2}u & \!\!\text{in }\Omega , \\ \!\!\!\!\Delta u=u=0 & \!\!\text{on }\partial \Omega , \end{array} \right. \end{equation*} where $\Omega $ is a smooth bounded domain of $ \mathbb{R} ^{n}$ $\left( n\geq 5\right) $, $\Delta ^{2}$ is the biharmonic operator, and $\nabla u$ denotes the spatial gradient of $u$ and $0<\gamma <1,$ $ \lambda >0$, $00$ and $f$ belongs to a given Lebesgue space.
Keywords : Variational methods, critical Sobolev exponent, biharmonic operator, Kirchhoff equations
MSC numbers : 35J20, 35IJ60, 47J30
Downloads: Full-text PDF   Full-text HTML


Copyright © Korean Mathematical Society. All Rights Reserved.
The Korea Science Technology Center (Rm. 411), 22, Teheran-ro 7-gil, Gangnam-gu, Seoul 06130, Korea
Tel: 82-2-565-0361  | Fax: 82-2-565-0364  | E-mail:   | Powered by INFOrang Co., Ltd