Asymptotic evaluation of $\int_0^\infty(\sin x/x)^ndx$
Commun. Korean Math. Soc.
Published online August 4, 2020
Jan-Christoph Schlage-Puchta
University of Rostock
Abstract : We consider the integral $\int_0^\infty\left(\frac{\sin x}{x}\right)^n\;dx$ as a function of the positive integer $n$. We show that there exists an asymptotic series in $\frac{1}{n}$ and compute the first terms of this series together with an explicit error bound.
Keywords : sine integral, asymptotic expansion
MSC numbers : 26D15, 33F05
Full-Text :

   

Copyright © Korean Mathematical Society. All Rights Reserved.
The Korea Science Technology Center (Rm. 411), 22, Teheran-ro 7-gil, Gangnam-gu, Seoul 06130, Korea
Tel: 82-2-565-0361  | Fax: 82-2-565-0364  | E-mail: paper@kms.or.kr   | Powered by INFOrang Co., Ltd