Asymptotic evaluation of $\int_0^\infty\left(\frac{\sin x}{x}\right)^n\;dx$
Commun. Korean Math. Soc. 2020 Vol. 35, No. 4, 1193-1202
Published online August 4, 2020
Printed October 31, 2020
Jan-Christoph Schlage-Puchta
Ulmenstra\ss e 69, Haus 3
Abstract : We consider the integral $\int_0^\infty\left(\frac{\sin x}{x}\right)^n\;dx$ as a function of the positive integer $n$. We show that there exists an asymptotic series in $\frac{1}{n}$ and compute the first terms of this series together with an explicit error bound.
Keywords : Sine integral, asymptotic expansion
MSC numbers : 26D15, 33F05
Downloads: Full-text PDF   Full-text HTML


Copyright © Korean Mathematical Society. All Rights Reserved.
The Korea Science Technology Center (Rm. 411), 22, Teheran-ro 7-gil, Gangnam-gu, Seoul 06130, Korea
Tel: 82-2-565-0361  | Fax: 82-2-565-0364  | E-mail:   | Powered by INFOrang Co., Ltd